首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A positive correlation between the length of the basis and the ability of the cuttings to form adventitious roots was observed in pea cuttings. Plants with a different basis length (the third internode) were obtained in different ways: Regulation by the level of irradiance, dark treatment or gibberellic acid. The length of the basis was also regulated by excision of the cuttings at different places on the stock plants. With increasing basis length an increase was found in the number of roots subsequently formed. The results were similar in cuttings from plants grown at different levels of irradiance or from dark treated plants. Optimal rooting was obtained by cutting the plants just above the second scale leaf. Cuttings from plants treated with 10?3M GA3 showed the same correlation between the length of the third internode and root formation as found in the other experiments, but the number of roots were at a lower level.  相似文献   

2.
In vitro root formation was studied in petiole explants from Pelargonium×hortorom Bailey cv. Radio exposed to different irradiance (2.5. 11.6 or 23.0 W/m2). Optimal root formation was found when stock plants were subjected to 2.5 W/m2 and explants were grown on a medium with 20 g/I of sucrose and 5.0 mM of nitrogen. The number of roots per explant decreased with increasing nitrogen or sucrose concentrations in the growth medium and with increasing irradiance applied to the stock plants. Variation in temperature (17, 21 or 25°C) did not affect root formation. The number of roots per explant was higher in explants from young petioles than in explants from older petioles. The initial nitrogen content of the explants was highest at the lowest irradiance. The content of reducing sugars and sucrose increased with increasing irradiance. The endogenous levels of lysine, arginine and ornithine were highest at 2.5 W/m2 and the levels of proline. alanine, γ-aminobutyric acid, glutamic acid, glutaminc, aspartic acid and asparagine were highest at 23.0 W/m2. With rising nitrogen concentration in the medium, the final endogenous content of nitrogen in the explants increased, whereas the content of reducing sugars decreased. When the sucrose concentration in the medium increased, the endogenous content of reducing sugars rose, and the nitrogen level was lowered. Variations in the nitrogen concentration in the growth medium influenced the final level of free amino acids in the explants.  相似文献   

3.
Pea plants (Pisum sativum L. cv. Alaska) were grown from seeds for eleven days at different irradiances. Cuttings were then excised and rooted at 16 W × m?2. Gibberellic acid (GA3, 10?11 to 10?3M) was applied to the cuttings immediately after excision. Cuttings from stock plants grown at the highest level of irradiance (38 W × m?2) formed the lowest number of roots. An increasing number of roots per cutting was obtained by decreasing the irradiance to the stock plants. In cuttings from stock plants grown at low irradiances, low concentrations of GA3 (10?8 and 10?7M) promoted root formation further. No effect on rooting by these GA3 concentrations was observed when applied to cuttings originating from stock plants grown at the high irradiances. Root formation in all cuttings was inhibited by GA3 at concentrations higher than 10?6M. The degree of inhibition by GA3 was influenced by the irradiance pretreatment and was increased with an increase in the irradiance during the stock plant growth. Seeds from different years produced cuttings with different response patterns regarding the irradiance and GA3 effects on rooting.  相似文献   

4.
Abstract Seedlings of Pinus sylvestris L. were grown under controlled conditions (temperature 20°C, photoperiod 17 h) at two irradiances, 8 or 40 W m-2. Hypocotyl cuttings were excised and rooted at different irradiances in tap water solutions of indolebutyric acid (IBA). The fastest rooting and highest rooting percentage were obtained with cuttings from stock plants grown at 8 W m-2 and treated with 10-5M IBA for 21 days. The concentration of 10-4M IBA inhibited root formation. In comparable treatments rooting was always better in cuttings from stock plants grown at 8 W m-2 than in cuttings from stock plants grown at 40 W m-2. The irradiance during the rooting period had only a minor influence on rooting. When cuttings from plants irradiated with 40 W m-2 were treated with 10-5M IBA for 21 days the rooting percentage almost reached the same level as in untreated cuttings from stock plants given 8 W m-2. In cuttings treated with IBA during the whole rooting period, rooting was depressed in comparison to untreated cuttings. Aeration of the 10-4M IBA solution increased the rooting percentage, but aeration had no effect on untreated cuttings and on cuttings treated with lower IBA concentrations.  相似文献   

5.
Sucrose was supplied to stock plants of Pisum sativum L. cv. Alaska grown at different levels of irradiance. There was no significant effect on the rooting of the cuttings by sucrose supply to intact plants regardless of the irradiance. However, an increase in the number of roots per cutting was obtained at increasing concentrations of sucrose when the stock plants had been grown at 4 W m?2 and their cotyledons had been removed two days before the cuttings were excised. Cotyledons were removed from stock plants at different times before the excision of cuttings with the intent to regulate the endogenous supply of carbohydrate. The number of roots per cutting was reduced by removal of the cotyledons and this reduction was correlated to the number of days the stock plants had grown without cotyledons as well as to the irradiance pre-treatment. A greater reduction occurred in cuttings from plants grown under 4 W m?2 than from those grown under 38 W m?2. The growth of the stock plants and the subsequent stem growth of the cuttings was determined by the irradiance to the stock plants and by the time of removal of the cotyledons. Exogenous supply of sucrose had no effect on the stem growth of the cuttings.  相似文献   

6.
Water stress and root formation in pea cuttings   总被引:1,自引:0,他引:1  
The stock plants of pea (Pistum sativium L. cv. Alaska) grown for 11 days at 16 W m?2 38 W m?2 were subjected to different degrees of moisture stress, simulated with polyethyleneglycol (PEG, 6000) for different periods. The cuttings were made at the end of stress treatments, planted in perlite and allowed to root in a mist propagation chamber. The number of adventitious roots formed on the cuttings from non-stressed plants was significantly higher under low (16 W m?2) than under high (38 W m?2) irradiance. However, under the influence of short duration stress the number of roots increased significantly under high but not under low irradiance. There was significantly poor rooting after prolonged stress under both irradiances. The leaf osmotic potential ψπ showed a greater reduction with increasing degree and duration of stress at 38 W m?2 than at 16 W m?2. The differential rooting behaviour as a result of stress levels and irradiances is discussed in the light of available literature on adventitious root formation.  相似文献   

7.
Stock plants of pea (Pisum sativum L. cv. Alaska) were grown at different controlled levels of irradiance (4, 16 or 38 W m?2) for 11 days from sowing. Morphactin (CFM, methyl-2-chloro-9-hydroxy-fluorene-9-carboxylate) was applied to the apex of the stock plants 3 days before cuttings were excised. The cuttings were rooted at 16 W m?2. High levels of morphactin (>5 × 10?3 mg l?1) inhibited root formation in the cuttings. Low concentrations of CFM (5 × 10?5 mg l?1) promoted the formation of adventitious roots in cuttings from plants grown at all three levels of irradiance, with the most pronounced effect in cuttings from 4 W m?2. Measurements of ethylene evolution by CFM-treated plants 3 days after application, revealed a stimulatory effect on ethylene production by high CFM concentrations.  相似文献   

8.
Meijkamp  B.B.  Doodeman  G.  Rozema  J. 《Plant Ecology》2001,154(1-2):135-146
The effects of enhanced UV-B are often overestimated in greenhouse studies due to low levels of photosynthetically active radiation (PAR). For this reason, we studied effects of enhanced UV-B (12 kJ m–2 d–1) at low and near ambient PAR levels on young vegetative plants of Vicia faba, in the greenhouse. It was hypothesized that near ambient PAR levels could reduce the negative UV-B effects on growth, due to higher amounts of UV-B absorbing compounds in the leaves and to morphological changes attenuating UV-B damage.We found that effects of enhanced UV-B on the growth were not negative. We found an increase in biomass in response to enhanced UV-B at low and near ambient PAR levels. The increase in biomass was related to increased branching, which leads to a higher interception of PAR. Enhanced irradiance of both PAR and UV-B had similar photomorphogenic effects: thicker and smaller leaves and reduced plant height and internode length. Moreover, the concentration of UV-B absorbing compounds was increased. We conclude that in this study effects of enhanced UV-B were mainly photomorphogenic effects, which were also induced by radiation in the PAR region.  相似文献   

9.
The rooting of softwood cuttings of Alnus incana (L.) Moench in nutrient solution was studied under controlled conditions. Cuttings consisting of one internode with the leaf and axillary bud attached rooted easily and more rapidly than shoot tip cuttings. Light was necessary for rooting but good rooting was obtained in photon flux densities of both 40 and 190 μmol m-2s-1. Root number and root length was reduced when light reached the base of the cuttings. Treatment with indolebutyric acid (10-6–10-4M) increased the number of roots but 10-4M delayed rooting and decreased the root length. Debudded internode cuttings rooted as well as intact cuttings, and detached leaves also contained sufficient substances for rooting.  相似文献   

10.
SUMMARY. Populations of Potamogeton richardsonii in Sparrow Lake, Ontario, vary greatly in leaf dimensions and internode length. Leaf length/breadth (L/B) ratio is increased by low irradiance, significantly at 4% daylight and, in a contrary fashion, by ontogenetic drift at high irradiances of shallow water. L/B ratio was not correlated with substrate. These findings suggest that this ratio is of doubtful value taxonomically or as an integrator, as specific leaf area is confirmed to be, of factors like photosynthetically active radiation (PAR). Longest internodes belong to plants from deep(1.8 m) water, and, in a summer-grown high-density population, internode length decreases logarithmically as depth lessens; both observations implicate PAR and ageing. Relative to undisturbed, shallow-water shoots, young transplants in full daylight elongate almost twice as fast because of the production of more, and longer, internodes. Young shoots in 12% daylight lengthen even more rapidly than those in full daylight (and four times faster than undisturbed shoots) in the same period because of quicker elongation of the same number of internodes. At ambient summer temperatures, this rate of elongation is inversely related to PAR. Experimental and seasonal field data indicate that maximal internode extension occurs on young shoots in very low irradiances at temperatures of 9–15°C; in nature, effects of increasing water temperatures are depressed by increasing irradiances and ageing until minimal extension takes place in old shoots at mid- to late-summer temperatures and in high irradiances. In tanks (40 m3) in full daylight, nutrients limit growth of plants on sand before they limit growth on clay (with marl intermediate) whereas, at 12% daylight, light limits growth on sand before soil nutrients do. The leaf area index on silty sand on an exposed shore was 0.4 at 0.5 m depth, in contrast to a cultured population where it was 4.0 in silty loam at the same depth. Thus, while it has not been possible to explain some variations in leaf morphology of P. richardsonii in environmental terms, the differential effects of ontogeny, PAR and temperature on shoot growth have been assessed, along with overall effects of light and nutrients on biomass and of shelter on leaf area index.  相似文献   

11.
The photosynthetic capabilities of the fern Pteris cretica var. ouvrardii were analysed by means of the light response curves of CO2 exchange. In control growth conditions (greenhouse, low-light: 20–32 W m?2); photosynthesis was shown to be saturated for low irradiance (20–25 W m?2); the saturating photosynthetic rate, very low as compared to higher plants, was due to an extremely high intracellular resistance. When irradiance during the photosynthesis measurement was higher than 60–80 W m?2, a constant decline of net CO2 exchange as a function of time was observed. When irradiance during growth was enhanced, whether in greenhouse (20–250 W m?2) or controlled (62 W m?2) conditions, the first fronds that had developed in the new condition from the crosier stage exhibited decreased net maximal photosynthesis and a decreased efficiency in low light, but saturating irradiance was unmodified. However, the fronds whose entire differentiation (from meristem) occurred under these moderate irradiances (plants defoliated of all fronds and crosiers at the time of transfer), possessed more efficient photosynthetic characteristics than control plants. Pteris is able to grow under extreme shade conditions (4–8 W m?2); light saturating photosynthesis and efficiency are higher under extreme shade than under control conditions. These adaptive characteristics indicate that Pteris is a well-adapted shade species.  相似文献   

12.
Pea plants were grown at different irradiances for eleven days. At this stage they were used for cuttings. The irradiance during the rooting period (155 mW · dm?2) was the same in all the experiments, Cuttings from stock plants cultivated at the weakest irradiance obtained the highest number of roots, and the poorest rooting appeared in cuttings from stock plants grown at the highest irradiance. The results indicate that the nutritional status of the stock plant is an important factor for root formation in the cutting. Light may influence the production of inhibitors which directly or indirectly affect root formation. The possible role of carbohydrates and growth promoters in the process of root formation is discussed.  相似文献   

13.
Effects of total irradiance on growth and flowering were studied in cineraria cv. Cindy Blue grown under warm (mean 21°C) glasshouse conditions. Efficiency of light conversion for leaf and shoot dry weight increase were reduced from 0.08 to 0.02 as the mean daily light integral increased from 0.9 to 4.4 MJ m-2 day-1 but no significant difference in leaf area were associated with this. Specific leaf area decreased exponentially from 0.07 to 0.02 m2g1 over the cumulative irradiance range 23 to 127 MJ m-2 after the start of treatments and thereafter remained stable. A light integral of 19.2 MJ m-2 were required for initiation of one leaf in plants grown under a daily integral of 4.4 MJ m-2 day-1, as compared with only 5.1 MJ m-2day-1 required per leaf in plants grown at less than 0.9 MJ m-2day-1. Neither chronological duration of juvenile development nor leaf number below the flower was affected by irradiance. However, as the rate of leaf initiation increased with irradiance up to 2.4 MJ m-2day-1 so the rate of progress to flower visibility increased linearly with irradiance over the same range. This rate then remained constant from 2.4 to 4.4 MJ m-2day-1. Length of the main flowering shoot decreased and the number of flowering shoots increased as irradiance increased from 0.9 to 2.4 MJ m-2 day-1 and then remained unchanged by further increases in irradiance.  相似文献   

14.
Cuttings obtained from seedlings of Pisum sativum L. were rooted in water solution. Shoot growth continued after excision and shoot length increased considerably before roots emerged. Increase in dry weight was strongly dependent on light supply. Continued growth was dependent on supply of mineral nutrients to the rooting solution. Mineral nutrients had no or slight influence on the number of roots formed on cuttings from stock plants grown in fertilized soil, but the growth in length of the roots was dependent on the presence of calcium in the solution. Root formation was dependent on photosynthetic products formed after excision. No roots were formed on cuttings kept in the dark. The number of roots increased with increasing irradiance given to the leafy part of the cutting. At a low level of irradiance sucrose supply through the rooting medium increased the number of roots. Light given to the basal part of the cuttings had a strongly inhibitory effect on the number of roots formed. It is concluded that the carbohydrate level easily becomes a limiting factor for root formation in growing pea cuttings. Availability of mineral nutrients influences in the first place the growth of the shoots.  相似文献   

15.
Two experiments were conducted in a factorial combination of three Zn levels (0, 10 and 40 mg Zn kg-1 soil) and two P levels (0 and 200 mg P kg-1 soil). Experiment 1 was carried out during winter in a heated glasshouse, and experiment 2 during summer under a rain shelter. Plants of dwarf bean (Phaseolus vulgaris L., cv. Borlotto nano) were grown in pots filled with sandy soil. In both experiments, leaf Zn concentration was reduced by the addition of P to plants grown at low Zn supply. However, leaf Zn concentration lower than the critical level was observed only during experiment 2, and the main effects of low Zn were reductions of internode length, light use efficiency and maximum photosynthetic rate. In plants with leaf Zn concentration lower than the critical level, saturating irradiance levels fell from 1000 μmol m-2 s-1 PPFD to 300–400 μmol m-2 s-1 PPFD. Reduction of net photosynthesis was observed from the beginning of flowering and led to decreased seed production. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Summary At a site in the Sonoran Desert, subterranean rocks and exposed boulders affected soil water potential as well as root morphology and distribution. For Agave deserti, the number of lateral roots per unit length of main root was 11 times higher under rocks and six times higher alongside rocks than in rock-free regions. Total root length per unit soil volume for Echinocereus engelmannii averaged 3-fold higher within 1 cm of boulders than 5 cm away, where the soil was drier. The total length of lateral roots per unit length of main root for Ferocactus acanthodes was 4.2 m m–1 under rocks but only 0.8 m m–1 in rock-free regions. The number of lateral roots per unit length of main root for Opuntia acanthocarpa was 7-fold higher alongside rocks than in rock-free regions and even higher under rocks. For transplanted and watered A. deserti, the number of new main roots produced per 1–2 month interval averaged 13 for five plants on the north side of boulders, 8 on the south side, 11 for five plants with half of their roots under rocks, 2 for those with half of their roots over rocks, and 3 for the control plants without rocks. Laboratory experiments showed that the soil water potential under rocks for 10 and 30 mm waterings stayed above –0.5 MPa for 13 and 19 d longer, respectively, than for regions away from rocks. The shortwave absorptance of granitic rocks from the field site was 0.82, the thermal conductivity coefficient was 1.50 W m–1 °C–1, and the volumetric heat capacity was 1.75 MJ m–3 °C–1. Field measurements indicated that 5-cm-thick buried rocks decreased the diel variation in soil temperatures on their undersurface by only 0.4° C compared with soil. Thus, the primary influence of rocks at the field site on root proliferation and branching for the four species was apparently caused by influences on soil water content.  相似文献   

17.
The effects of vesicular-arbuscular mycorrhizal (VAM) colonisation on phosphorus (P) uptake and growth of clover (Trifolium subterraneum L.) in response to soil compaction were studied in three pot experiments. P uptake and growth of the plants decreased as the bulk density of the soil increased from 1.0 to 1.6 Mg m-3. The strongest effects of soil compaction on P uptake and plant growth were observed at the highest P application (60 mg kg-1 soil). The main observation of this study was that at low P application (15 mg kg-1 soil), P uptake and shoot dry weight of the plants colonised by Glomus intraradices were greater than those of non-mycorrhizal plants at similar levels of compaction of the soil. However, the mycorrhizal growth response decreased proportionately as soil compaction was increased. Decreased total P uptake and shoot dry weight of mycorrhizal clover in compacted soil were attributed to the reduction in the root length. Soil compaction had no significant effect on the percentage of root length colonised. However, total root length colonised was lower (6.6 m pot-1) in highly compacted soil than in slightly compacted soil (27.8 m pot-1). The oxygen content of the soil atmosphere measured shortly before the plants were harvested varied from 0.18 m3m-3 in slightly compacted soil (1.0 Mg m-3) to 0.10 m3m-3 in highly compacted soil (1.6 Mg m-3).  相似文献   

18.
Light effects on root formation in aspen and willow cuttings   总被引:1,自引:0,他引:1  
The effect of light on rooting of leafy cuttings of aspen (Populus tremula × tremuloides) and a willow hybrid (Salix caprea × viminalis) was investigated under controlled conditions in water culture. Two levels of irradiance were used, 40 and 8 W m?2. The lower level gave the best rooting of aspen cuttings, both when applied to the stock plants before the cuttings were taken and when given to the cuttings during the rooting period. Irradiation of the cutting base during the rooting period inhibited rooting almost completely in aspen and decreased the number of roots formed in the Salix hybrid. Net photosynthesis in the cuttings of Salix decreased considerably after excision and increased again after formation of roots. Indirect evidence indicated that photosynthesis was even more affected in aspen cuttings. The possible roles of carbohydrates and inhibitors in the light effects are discussed.  相似文献   

19.
Tobacco (Nicotiana tabacum L.) plants were cultured in vitro photoautotrophically at three levels of irradiance (PAR 400–700 nm): low (LI, 60 μmol m−2 s−1), middle (MI, 180 μmol m−2 s−1) and high (HI, 270 μmol m−2 s−1). Anatomy of the fourth leaf from bottom was followed during leaf development. In HI and MI plants, leaf area expansion started earlier as compared to LI plants, and both HI and MI plants developed some adaptations of sun species: leaves were thicker with higher proportion of palisade parenchyma to spongy parenchyma tissue. Furthermore, in HI and MI plants palisade and spongy parenchyma cells were larger and relative abundance of chloroplasts in parenchyma cells measured as chloroplasts cross-sectional area in the cell was lower than in LI plants. During leaf growth, chloroplasts crosssectional area in both palisade and spongy parenchyma cells in all treatments considerably decreased and finally it occupied only about 5 to 8 % of the cell cross-sectional area. Thus, leaf anatomy of photoautotrophically in vitro cultured plants showed a similar response to growth irradiance as in vivo grown plants, however, the formation of chloroplasts and therefore of photosynthetic apparatus was strongly impaired.  相似文献   

20.
Effects of variable levels of photosynthetically active radiation (PAR) and NaCl concentrations, typical of closed ecological life support systems, on growth of Salicornia europaea L. plants, CO2 exchange, mineral composition, and the content of malondialdehyde (MDA) and photosynthetic pigments were investigated. The plants were grown for 25 days at different salinities of nutrient Knop solution (171, 342, and 513 mM NaCl) under two PAR levels (690 and 1150 μmol/(m2 s)). At PAR of 690 μmol/(m2 s), the plant productivity did not show significant changes at increasing salinities; at 1150 μmol/(m2 s), the maximal productivity was observed at NaCl concentrations of 171 and 342 mM. The increase in NaCl concentration from 171 to 513 mM in the nutrient solution led to a substantial increase in the relative Na content in aboveground organs at PAR level of 1150 μmol/(m2 s). The MDA content in aboveground organs by the end of the growth period was independent of PAR intensity. The content of photosynthetic pigments in the assimilatory tissue decreased with the increase in salinity from 342 to 513 mM NaCl at PAR level of 1150 μmol/(m2 s) but not at the lower irradiance. The combination of 1150 μmol/(m2 s) PAR intensity with the salinity as high as 342 mM NaCl was found to be the most effective for optimal productivity of S. europaea plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号