首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hallmark of acute lung injury is the accumulation of a protein rich edema which impairs gas exchange and leads to hypoxemia. The resolution of lung edema is effected by active sodium transport, mostly contributed by apical Na+ channels and the basolateral located Na,K-ATPase. It has been reported that the decrease of Na,K-ATPase function seen during lung injury is due to its endocytosis from the cell plasma membrane into intracellular pools. In alveolar epithelial cells exposed to severe hypoxia, we have reported that increased production of mitochondrial reactive oxygen species leads to Na,K-ATPase endocytosis and degradation. We found that this regulated process follows what is referred as the Phosphorylation–Ubiquitination–Recognition–Endocytosis–Degradation (PURED) pathway. Cells exposed to hypoxia generate reactive oxygen species which activate PKCζ which in turn phosphorylates the Na,K-ATPase at the Ser18 residue in the N-terminus of the α1-subunit leading the ubiquitination of any of the four lysines (K16, K17, K19, K20) adjacent to the Ser18 residue. This process promotes the α1-subunit recognition by the μ2 subunit of the adaptor protein-2 and its endocytosis trough a clathrin dependent mechanism. Finally, the ubiquitinated Na,K-ATPase undergoes degradation via a lysosome/proteasome dependent mechanism.  相似文献   

2.
The c-Jun amino-terminal kinase (JNK) plays a role in inflammation, proliferation, apoptosis, and cell adhesion and cell migration by phosphorylating paxillin and β-catenin. JNK phosphorylation downstream of AMP-activated protein kinase (AMPK) activation is required for high CO2 (hypercapnia)-induced Na,K-ATPase endocytosis in alveolar epithelial cells. Here, we provide evidence that during hypercapnia, JNK promotes the phosphorylation of LMO7b, a scaffolding protein, in vitro and in intact cells. LMO7b phosphorylation was blocked by exposing the cells to the JNK inhibitor SP600125 and by infecting cells with dominant-negative JNK or AMPK adenovirus. The knockdown of the endogenous LMO7b or overexpression of mutated LMO7b with alanine substitutions of five potential JNK phosphorylation sites (LMO7b-5SA) or only Ser-1295 rescued both LMO7b phosphorylation and the hypercapnia-induced Na,K-ATPase endocytosis. Moreover, high CO2 promoted the colocalization and interaction of LMO7b and the Na,K-ATPase α1 subunit at the plasma membrane, which were prevented by SP600125 or by transfecting cells with LMO7b-5SA. Collectively, our data suggest that hypercapnia leads to JNK-induced LMO7b phosphorylation at Ser-1295, which facilitates the interaction of LMO7b with Na,K-ATPase at the plasma membrane promoting the endocytosis of Na,K-ATPase in alveolar epithelial cells.  相似文献   

3.
Hypoxia promotes Na,K-ATPase endocytosis via protein kinase Cζ (PKCζ)-mediated phosphorylation of the Na,K-ATPase α subunit. Here, we report that hypoxia leads to the phosphorylation of 5′-AMP-activated protein kinase (AMPK) at Thr172 in rat alveolar epithelial cells. The overexpression of a dominant-negative AMPK α subunit (AMPK-DN) construct prevented the hypoxia-induced endocytosis of Na,K-ATPase. The overexpression of the reactive oxygen species (ROS) scavenger catalase prevented hypoxia-induced AMPK activation. Moreover, hypoxia failed to activate AMPK in mitochondrion-deficient ρ0-A549 cells, suggesting that mitochondrial ROS play an essential role in hypoxia-induced AMPK activation. Hypoxia-induced PKCζ translocation to the plasma membrane and phosphorylation at Thr410 were prevented by the pharmacological inhibition of AMPK or by the overexpression of the AMPK-DN construct. We found that AMPK α phosphorylates PKCζ on residue Thr410 within the PKCζ activation loop. Importantly, the activation of AMPK α was necessary for hypoxia-induced AMPK-PKCζ binding in alveolar epithelial cells. The overexpression of T410A mutant PKCζ prevented hypoxia-induced Na,K-ATPase endocytosis, confirming that PKCζ Thr410 phosphorylation is essential for this process. PKCζ activation by AMPK is isoform specific, as small interfering RNA targeting the α1 but not the α2 catalytic subunit prevented PKCζ activation. Accordingly, we provide the first evidence that hypoxia-generated mitochondrial ROS lead to the activation of the AMPK α1 isoform, which binds and directly phosphorylates PKCζ at Thr410, thereby promoting Na,K-ATPase endocytosis.When exposed to low oxygen levels (hypoxia), cells develop adaptative strategies to maintain adequate levels of ATP (21). These strategies include increasing the efficiency of energy-producing pathways, mostly through anaerobic glycolysis, while decreasing energy-consuming processes such as Na,K-ATPase activity (30). Alveolar hypoxia occurs in many respiratory disorders, and it has been shown to decrease epithelial active Na+ transport, leading to impaired fluid reabsorption (37, 41, 42). Active Na+ transport and, thus, alveolar fluid reabsortion are effected mostly via apical sodium channels and the basolateral Na,K-ATPase (32, 38, 42). We have reported previously that hypoxia inhibits Na,K-ATPase activity by promoting its endocytosis from the plasma membrane by a mechanism that requires the generation of mitochondrial reactive oxygen species (ROS) and the phosphorylation of the Na,K-ATPase α subunit at Ser18 by protein kinase Cζ (PKCζ) (8, 9).The 5′-AMP-activated protein kinase (AMPK) is a heterotrimeric Ser/Thr kinase composed of a catalytic α subunit and regulatory β and γ subunits. Both isoforms of the AMPK catalytic subunit (α1 and α2) form complexes with noncatalytic subunits. The α1 subunit is ubiquitously expressed, whereas the α2 subunit isoform is expressed predominantly in tissues like the liver, heart, and skeletal muscle (36). The α1 and α2 subunit isoforms have ∼90% homology in their N-terminal catalytic domains and ∼60% homology in their C-terminal domains (36), suggesting that they may have distinct downstream targets (31). AMPK activation requires phosphorylation at Thr172 in the activation loop of the α subunit by upstream kinases (12, 19). Findings from recent studies suggest that AMPK is an important signaling intermediary in coupling ion transport and metabolism (15). Indeed, it has been reported that the pharmacological activation of AMPK inhibits amiloride- and ouabain-sensitive epithelial Na+ transport (15). Moreover, the activities of the epithelial Na+ channel (ENaC) (2, 17), the Na,K-ATPase (40), and the cystic fibrosis transmembrane conductance regulator (17) have been shown to be inhibited by AMPK. Here, we provide evidence that hypoxia, via mitochondrial ROS, leads to AMPK activation and that AMPK binds to and directly phosphorylates PKCζ in an isoform-specific manner, thus promoting Na,K-ATPase endocytosis in alveolar epithelial cells (AEC).  相似文献   

4.
Hypercapnia has been shown to impair alveolar fluid reabsorption (AFR) by decreasing Na,K-ATPase activity. Extracellular signal-regulated kinase pathway (ERK) is activated under conditions of cellular stress and has been known to regulate the Na,K-ATPase. Here, we show that hypercapnia leads to ERK activation in a time-dependent manner in alveolar epithelial cells (AEC). Inhibition of ERK by U0126 or siRNA prevented both the hypercapnia-induced Na,K-ATPase endocytosis and impairment of AFR. Moreover, ERK inhibition prevented AMPK activation, a known modulator of hypercapnia-induced Na,K-ATPase endocytosis. Accordingly, these data suggest that hypercapnia-induced Na,K-ATPase endocytosis is dependent on ERK activation in AEC and that ERK plays an important role in hypercapnia-induced impairment of AFR in rat lungs.  相似文献   

5.
Phospholemman (FXYD1), mainly expressed in heart and skeletal muscle, is a member of the FXYD protein family, which has been shown to decrease the apparent K(+) and Na(+) affinity of Na,K-ATPase ( Crambert, G., Fuzesi, M., Garty, H., Karlish, S., and Geering, K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 11476-11481 ). In this study, we use the Xenopus oocyte expression system to study the role of phospholemman phosphorylation by protein kinases A and C in the modulation of different Na,K-ATPase isozymes present in the heart. Phosphorylation of phospholemman by protein kinase A has no effect on the maximal transport activity or on the apparent K(+) affinity of Na,K-ATPase alpha1/beta1 and alpha2/beta1 isozymes but increases their apparent Na(+) affinity, dependent on phospholemman phosphorylation at Ser(68). Phosphorylation of phospholemman by protein kinase C affects neither the maximal transport activity of alpha1/beta1 isozymes nor the K(+) affinity of alpha1/beta1 and alpha2/beta1 isozymes. However, protein kinase C phosphorylation of phospholemman increases the maximal Na,K-pump current of alpha2/beta1 isozymes by an increase in their turnover number. Thus, our results indicate that protein kinase A phosphorylation of phospholemman has similar functional effects on Na,K-ATPase alpha1/beta and alpha2/beta isozymes and increases their apparent Na(+) affinity, whereas protein kinase C phosphorylation of phospholemman modulates the transport activity of Na,K-ATPase alpha2/beta but not of alpha1/beta isozymes. The complex and distinct regulation of Na,K-ATPase isozymes by phosphorylation of phospholemman may be important for the efficient control of heart contractility and excitability.  相似文献   

6.
7.
FXYD1 (phospholemman) is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the Na,K-ATPase enzyme complex in specific tissues and specific physiological states. In heart and skeletal muscle sarcolemma, FXYD1 is also the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinase A and by protein kinase C, which phosphorylate the protein at conserved Ser residues in its cytoplasmic domain, altering its Na,K-ATPase regulatory activity. FXYD1 adopts an L-shaped α-helical structure with the transmembrane helix loosely connected to a cytoplasmic amphipathic helix that rests on the membrane surface. In this paper we describe NMR experiments showing that neither PKA phosphorylation at Ser68 nor the physiologically relevant phosphorylation mimicking mutation Ser68Asp induces major changes in the protein conformation. The results, viewed in light of a model of FXYD1 associated with the Na,K-ATPase α and β subunits, indicate that the effects of phosphorylation on the Na,K-ATPase regulatory activity of FXYD1 could be due primarily to changes in electrostatic potential near the membrane surface and near the Na+/K+ ion binding site of the Na,K-ATPase α subunit.  相似文献   

8.
Site-specific mutagenesis was used to study the function of a conserved, extracellular aspartic acid residue from the sheep Na,K-ATPase alpha subunit. This amino acid, Asp-121, is the penultimate residue of the first extracellular domain of the alpha subunit. The border residues of this particular extracellular loop of the alpha subunit have been shown to be determinants of ouabain sensitivity (Price, E. M., and Lingrel, J. B. (1988) Biochemistry 27, 8400-8408). In order to determine if Asp-121 is involved in ouabain binding, five different amino acid substitutions at this position were generated. Four of the five mutant alpha subunits, containing either Asn, Ala, Glu, or Ser in place of Asp-121, conferred ouabain resistance to HeLa cells when expressed in those cells. Cloned sublines of cells selected in ouabain were characterized in terms of ouabain-inhibitable cell growth and Na,K-ATPase activity. The cells expressing the mutant Na,K-ATPase alpha subunit containing either Asn, Ala, Glu, or Ser in place of Asp-121 contained a component of Na,K-ATPase activity that was nearly 100-times more resistant to ouabain than the endogenous HeLa (human) or sheep enzyme. Apparently, conservative (Glu for Asp), isosteric (Asn for Asp), and nonconservative (Ala or Ser for Asp) substitutions all significantly decreased ouabain sensitivity. These data suggest that Asp-121 of the sheep Na,K-ATPase alpha subunit participates in the binding interaction between the enzyme and ouabain.  相似文献   

9.
10.
Dopamine is a major regulator of sodium reabsorption in proximal tubule epithelia. It induces the endocytosis of plasma membrane Na,K-ATPase molecules, and this results in a reduced capacity of the cells to transport sodium. Dopamine induces the phosphorylation of Ser-18 in the alpha1-subunit of Na,K-ATPase. Fluorescence resonance energy transfer analysis of cells expressing YFP-alpha1 and beta1-CFP reveals that treatment of the cells with dopamine increases energy transfer between CFP and YFP. This is consistent with a protein conformational change that results in the N-terminal end of alpha1 moving closer to the internal face of the plasma membrane.  相似文献   

11.
The roles of Ser775 and Glu779, two amino acids in the putative fifth transmembrane segment of the Na,K-ATPase alpha subunit, in determining the voltage and extracellular K+ (K+(o)) dependence of enzyme-mediated ion transport, were examined in this study. HeLa cells expressing the alpha1 subunit of sheep Na,K-ATPase were voltage clamped via patch electrodes containing solutions with 115 mM Na+ (37 degrees C). Na,K-pump current produced by the ouabain-resistant control enzyme (RD), containing amino acid substitutions Gln111Arg and Asn122Asp, displayed a membrane potential and K+(o) dependence similar to wild-type Na,K-ATPase during superfusion with 0 and 148 mM Na+-containing salt solutions. Additional substitution of alanine at Ser775 or Glu779 produced 155- and 15-fold increases, respectively, in the K+(o) concentration that half-maximally activated Na,K-pump current at 0 mV in extracellular Na+-free solutions. However, the voltage dependence of Na,K-pump current was unchanged in RD and alanine-substituted enzymes. Thus, large changes in apparent K+(o) affinity could be produced by mutations in the fifth transmembrane segment of the Na,K-ATPase with little effect on voltage-dependent properties of K+ transport. One interpretation of these results is that protein structures responsible for the kinetics of K+(o) binding and/or occlusion may be distinct, at least in part, from those that are responsible for the voltage dependence of K+(o) binding to the Na,K-ATPase.  相似文献   

12.
The alpha1 subunit of Na,K-ATPase is phosphorylated at Ser-16 by phorbol ester-sensitive protein kinase(s) C (PKC). The role of Ser-16 phosphorylation was analyzed in COS-7 cells stably expressing wild-type or mutant (T15A/S16A and S16D-E) ouabain-resistant Bufo alpha1 subunits. In cells incubated at 37 degrees C, phorbol 12, 13-dibutyrate (PDBu) inhibited the transport activity and decreased the cell surface expression of wild-type and mutant Na,K-pumps equally ( approximately 20-30%). This effect of PDBu was mimicked by arachidonic acid and was dependent on PKC, phospholipase A(2), and cytochrome P450-dependent monooxygenase. In contrast, incubation of cells at 18 degrees C suppressed the down-regulation of Na,K-pumps and revealed a phosphorylation-dependent stimulation of the transport activity of Na,K-ATPase. Na,K-ATPase from cells expressing alpha1-mutants mimicking Ser-16 phosphorylation (S16D or S16E) exhibited an increase in the apparent Na affinity. This finding was confirmed by the PDBu-induced increase in Na sensitivity of the activity of Na,K-ATPase measured in permeabilized nontransfected COS-7 cells. These results illustrate the complexity of the regulation of Na,K-ATPase alpha1 isozymes by phorbol ester-sensitive PKCs and reveal 1) a phosphorylation-independent decrease in cell surface expression and 2) a phosphorylation-dependent stimulation of the transport activity attributable to an increase in the apparent Na affinity.  相似文献   

13.
The two cell types in the lens, epithelium and fiber, have a very different specific activity of Na,K-ATPase; activity is much higher in the epithelium. However, judged by Western blot, fibers and epithelium express a similar amount of both Na,K-ATPase alpha and beta subunit proteins. Na,K-ATPase protein abundance does not tally with Na,K-ATPase activity. Studies were conducted to examine whether protein synthesis plays a role in maintenance of the high Na,K-ATPase activity in lens epithelium. An increase of cytoplasmic sodium was found to increase Na,K-ATPase protein expression in the epithelium, but not in the fibers. The findings illustrate the ability of lens epithelium to synthesize new Na,K-ATPase protein as a way to boost Na,K-ATPase in response to cell damage or pathological events. Methionine incorporation studies suggested Na,K-ATPase synthesis may also play a role in day to day preservation of high Na,K-ATPase activity. Na,K-ATPase protein in lens epithelial cells appeared to be continually synthesized and degraded. Experiments with cycloheximide suggest that specific activity of Na,K-ATPase in the lens epithelium may depend on the ability of the cells to continuously synthesize fresh Na,K-ATPase proteins. However, other factors such as phosphorylation of Na,K-ATPase alpha subunit may also influence Na,K-ATPase activity. When intact lenses were exposed to the agonist thrombin, Na,K-ATPase activity was diminished, but the response was suppressed by inhibitors of the Src family of non-receptor tyrosine kinases. Thrombin elicited tyrosine phosphorylation of lens epithelium membrane proteins, including a 100 kDa protein band thought to be the Na,K-ATPase alpha 1 subunit. It remains to be determined whether a tyrosine phosphorylation mechanism contributes to the low activity of Na,K-ATPase in lens fibers.  相似文献   

14.
Our previous finding that the muscle nicotinic acetylcholine receptor (nAChR) and the Na,K-ATPase interact as a regulatory complex to modulate Na,K-ATPase activity suggested that chronic, circulating nicotine may alter this interaction, with long-term changes in the membrane potential. To test this hypothesis, we chronically exposed rats to nicotine delivered orally for 21-31 days. Chronic nicotine produced a steady membrane depolarization of ~3 mV in the diaphragm muscle, which resulted from a net change in electrogenic transport by the Na,K-ATPase α2 and α1 isoforms. Electrogenic transport by the α2 isoform increased (+1.8 mV) while the activity of the α1 isoform decreased (-4.4 mV). Protein expression of Na,K-ATPase α1 or α2 isoforms and the nAChR did not change; however, the content of α2 subunit in the plasma membrane decreased by 25%, indicating that its stimulated electrogenic transport is due to an increase in specific activity. The physical association between the nAChR, the Na,K-ATPase α1 or α2 subunits, and the regulatory subunit of the Na,K-ATPase, phospholemman (PLM), measured by co-immuno precipitation, was stable and unchanged. Chronic nicotine treatment activated PKCα/β2 and PKCδ and was accompanied by parallel increases in PLM phosphorylation at Ser(63) and Ser(68). Collectively, these results demonstrate that nicotine at chronic doses, acting through the nAChR-Na,K-ATPase complex, is able to modulate Na,K-ATPase activity in an isoform-specific manner and that the regulatory range includes both stimulation and inhibition of enzyme activity. Cholinergic modulation of Na,K-ATPase activity is achieved, in part, through activation of PKC and phosphorylation of PLM.  相似文献   

15.
It is known that the Na/K-ATPase alpha1 subunit interacts directly with inositol 1,4,5-triphosphate (IP(3)) receptors. In this study we tested whether this interaction is required for extracellular stimuli to efficiently regulate endoplasmic reticulum (ER) Ca(2+) release. Using cultured pig kidney LLC-PK1 cells as a model, we demonstrated that graded knockdown of the cellular Na/K-ATPase alpha1 subunit resulted in a parallel attenuation of ATP-induced ER Ca(2+) release. When the knockdown cells were rescued by knocking in a rat alpha1, the expression of rat alpha1 restored not only the cellular Na/K-ATPase but also ATP-induced ER Ca(2+) release. Mechanistically, this defect in ATP-induced ER Ca(2+) release was neither due to the changes in the amount or the function of cellular IP(3) and P2Y receptors nor the ER Ca(2+) content. However, the alpha1 knockdown did redistribute cellular IP(3) receptors. The pool of IP(3) receptors that resided close to the plasma membrane was abolished. Because changes in the plasma membrane proximity could reduce the efficiency of signal transmission from P2Y receptors to the ER, we further determined the dose-dependent effects of ATP on protein kinase Cepsilon activation and ER Ca(2+) release. The data showed that the alpha1 knockdown de-sensitized the ATP-induced ER Ca(2+) release but not PKCepsilon activation. Moreover, expression of the N terminus of Na/K-ATPase alpha1 subunit not only disrupted the formation of the Na/K-ATPase-IP(3) receptor complex but also abolished the ATP-induced Ca(2+) release. Finally, we observed that the alpha1 knockdown was also effective in attenuating ER Ca(2+) release provoked by angiotensin II and epidermal growth factor.  相似文献   

16.
The localization of the Na,K-ATPase isoenzymes in sciatic nerve remains controversial, as well as diabetes-induced changes in Na,K-ATPase isoforms. Some of these changes could be prevented by fish oil therapy. The aim of this study was to determine by confocal microscopy the distribution of Na,K-ATPase isoforms (alpha1, alpha2, alpha3, beta1, and beta2) in the sciatic nerve, the changes induced by diabetes, and the preventive effect of fish oil in diabetic neuropathy. This study was performed in three groups of rats. In the first two groups, diabetes was induced by streptozotocin and rats were supplemented daily with fish oil or olive oil at a dosage of 0.5 g/kg of body weight. The third one was a control group that was supplemented with olive oil. Five antibodies against specific epitopes of Na,K-ATPase isoenzymes were applied to stained dissociated nerve fibers with fluorescent secondary antibodies. The five isoenzymes were documented in nonspecific regions, Schwann cells (myelin), and the node of Ranvier. The localization of the alpha1, alpha2, and beta1 isoenzymes was not affected by diabetes. In contrast, diabetes induced a decrease of the alpha2 subunit (p < 0.05) and an up-regulation of the beta2 subunit (p < 0.05). These modifications were noted in both regions for alpha2 and were localized at the myelin domain only for the beta2. Fish oil supplementation prevented the diabetes-induced changes in the alpha2 subunit with an additional up-regulation. The beta2 subunit was not modified. A phenotypic change similar to nerve injury was induced by diabetes. Fish oil supplementation partially prevented some of these changes.  相似文献   

17.
To maintain cellular ATP levels, hypoxia leads to Na,K-ATPase inhibition in a process dependent on reactive oxygen species (ROS) and the activation of AMP-activated kinase α1 (AMPK-α1). We report here that during hypoxia AMPK activation does not require the liver kinase B1 (LKB1) but requires the release of Ca(2+) from the endoplasmic reticulum (ER) and redistribution of STIM1 to ER-plasma membrane junctions, leading to calcium entry via Ca(2+) release-activated Ca(2+) (CRAC) channels. This increase in intracellular Ca(2+) induces Ca(2+)/calmodulin-dependent kinase kinase β (CaMKKβ)-mediated AMPK activation and Na,K-ATPase downregulation. Also, in cells unable to generate mitochondrial ROS, hypoxia failed to increase intracellular Ca(2+) concentration while a STIM1 mutant rescued the AMPK activation, suggesting that ROS act upstream of Ca(2+) signaling. Furthermore, inhibition of CRAC channel function in rat lungs prevented the impairment of alveolar fluid reabsorption caused by hypoxia. These data suggest that during hypoxia, calcium entry via CRAC channels leads to AMPK activation, Na,K-ATPase downregulation, and alveolar epithelial dysfunction.  相似文献   

18.
The influence of Lyn kinase on Na,K-ATPase in porcine lens epithelium   总被引:3,自引:0,他引:3  
Na,K-ATPase is essential for the regulation of cytoplasmic Na+ and K+ levels in lens cells. Studies on the intact lens suggest activation of tyrosine kinases may inhibit Na,K-ATPase function. Here, we tested the influence of Lyn kinase, a Src-family member, on tyrosine phosphorylation and Na,K-ATPase activity in membrane material isolated from porcine lens epithelium. Western blot studies indicated the expression of Lyn in lens cells. When membrane material was incubated in ATP-containing solution containing partially purified Lyn kinase, Na,K-ATPase activity was reduced by 38%. Lyn caused tyrosine phosphorylation of multiple protein bands. Immunoprecipitation and Western blot analysis showed Lyn treatment causes an increase in density of a 100-kDa phosphotyrosine band immunopositive for Na,K-ATPase 1 polypeptide. Incubation with protein tyrosine phosphatase 1B (PTP-1B) reversed the Lyn-dependent tyrosine phosphorylation increase and the change of Na,K-ATPase activity. The results suggest that Lyn kinase treatment of a lens epithelium membrane preparation is able to bring about partial inhibition of Na,K-ATPase activity associated with tyrosine phosphorylation of multiple membrane proteins, including the Na,K-ATPase 1 catalytic subunit. lens; Na,K-ATPase; tyrosine phosphorylation; Lyn  相似文献   

19.
Structure of the Na,K-ATPase regulatory protein FXYD1 in micelles   总被引:1,自引:0,他引:1  
Teriete P  Franzin CM  Choi J  Marassi FM 《Biochemistry》2007,46(23):6774-6783
FXYD1 is a major regulatory subunit of the Na,K-ATPase and the principal substrate of hormone-regulated phosphorylation by c-AMP dependent protein kinases A and C in heart and skeletal muscle sarcolemma. It is a member of an evolutionarily conserved family of membrane proteins that regulate the function of the enzyme complex in a tissue-specific and physiological-state-specific manner. Here, we present the three-dimensional structure of FXYD1 determined in micelles by NMR spectroscopy. Structure determination was made possible by measuring residual dipolar couplings in weakly oriented micelle samples of the protein. This allowed us to obtain the relative orientations of the helical segments and information about the protein dynamics. The structural analysis was further facilitated by the inclusion of distance restraints, obtained from paramagnetic spin label relaxation enhancements, and by refinement with a micelle depth restraint, derived from paramagnetic Mn line broadening effects. The structure of FXYD1 provides the foundation for understanding its intra-membrane association with the Na,K-ATPase alpha subunit and suggests a mechanism whereby the phosphorylation of conserved Ser residues, by protein kinases A and C, could induce a conformational change in the cytoplasmic domain of the protein to modulate its interaction with the alpha subunit.  相似文献   

20.
Based on recent data showing that overexpression of the Na,K-ATPase beta(1) subunit increased cell-cell adhesion of nonpolarized cells, we hypothesized that the beta(1) subunit can also be involved in the formation of cell-cell contacts in highly polarized epithelial cells. In support of this hypothesis, in Madin-Darby canine kidney (MDCK) cells, the Na,K-ATPase alpha(1) and beta(1) subunits were detected as precisely co-localized with adherens junctions in all stages of the monolayer formation starting from the initiation of cell-cell contact. The Na,K-ATPase and adherens junction protein, beta-catenin, stayed partially co-localized even after their internalization upon disruption of intercellular contacts by Ca(2+) depletion of the medium. The Na,K-ATPase subunits remained co-localized with the adherens junctions after detergent treatment of the cells. In contrast, the heterodimer formed by expressed unglycosylated Na,K-ATPase beta(1) subunit and the endogenous alpha(1) subunit was easily dissociated from the adherens junctions and cytoskeleton by the detergent extraction. The MDCK cell line in which half of the endogenous beta(1) subunits in the lateral membrane were substituted by unglycosylated beta(1) subunits displayed a decreased ability to form cell-to-cell contacts. Incubation of surface-attached MDCK cells with an antibody against the extracellular domain of the Na,K-ATPase beta(1) subunit specifically inhibited cell-cell contact formation. We conclude that the Na,K-ATPase beta(1) subunit is involved in the process of intercellular adhesion and is necessary for association of the heterodimeric Na,K-ATPase with the adherens junctions. Further, normal glycosylation of the Na,K-ATPase beta(1) subunit is essential for the stable association of the pump with the adherens junctions and plays an important role in cell-cell contact formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号