首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cellular responses produced by EGF are mediated through the receptor (EGFR) and by various enzymes and scaffolds. Recent studies document IQGAP1 as a scaffold for the MAPK cascade, binding directly to B-Raf, MEK, and ERK and regulating their activation in response to EGF. We previously showed that EGF is unable to activate B-Raf in cells lacking IQGAP1. However, the mechanism by which IQGAP1 links B-Raf to EGFR was unknown. Here we report that endogenous EGFR and IQGAP1 co-localize and co-immunoprecipitate in cells. EGF has no effect on the association, but Ca(2+) attenuates binding. In vitro analysis demonstrated a direct association mediated through the IQ and kinase domains of IQGAP1 and EGFR, respectively. Calmodulin disrupts this interaction. Using a mass spectrometry-based assay, we show that EGF induces phosphorylation of IQGAP1 Ser(1443), a residue known to be phosphorylated by PKC. This phosphorylation is eliminated by pharmacological inhibition of either EGFR or PKC and transfection with small interfering RNA directed against the PKCα isoform. In IQGAP1-null cells, EGF-stimulated tyrosine phosphorylation of EGFR is severely attenuated. Normal levels of autophosphorylation are restored by reconstituting wild type IQGAP1 and enhanced by an IQGAP1 S1443D mutant. Collectively, these data demonstrate a functional interaction between IQGAP1 and EGFR and suggest that IQGAP1 modulates EGFR activation.  相似文献   

3.
Human epidermal growth factor receptor 2 (HER2) is overexpressed in 20-25% of breast cancers. Increased HER2 expression is an adverse prognostic factor and correlates with decreased patient survival. HER2-positive (HER2(+)) breast cancer is treated with trastuzumab. Unfortunately, some patients are intrinsically refractory to therapy, and many who do respond initially become resistant within 1 year. Understanding the molecular mechanisms underlying HER2 signaling and trastuzumab resistance is essential to reduce breast cancer mortality. IQGAP1 is a ubiquitously expressed scaffold protein that contains multiple protein interaction domains. By regulating its binding partners IQGAP1 integrates signaling pathways, several of which contribute to breast tumorigenesis. We show here that IQGAP1 is overexpressed in HER2(+) breast cancer tissue and binds directly to HER2. Knockdown of IQGAP1 decreases HER2 expression, phosphorylation, signaling, and HER2-stimulated cell proliferation, effects that are all reversed by reconstituting cells with IQGAP1. Reducing IQGAP1 up-regulates p27, and blocking this increase attenuates the growth inhibitory effects of IQGAP1 knockdown. Importantly, IQGAP1 is overexpressed in trastuzumab-resistant breast epithelial cells, and reducing IQGAP1 both augments the inhibitory effects of trastuzumab and restores trastuzumab sensitivity to trastuzumab-resistant SkBR3 cells. These data suggest that inhibiting IQGAP1 function may represent a rational strategy for treating HER2(+) breast carcinoma.  相似文献   

4.
5.
Myostatin, a member of TGF-beta superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-beta and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin and decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn(2+) greater than 10microM, but not in the absence of Zn(2+). Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K(D)) of 2.02x10(-8)M and 9.36x10(-9)M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM.  相似文献   

6.
MEKK1 binds raf-1 and the ERK2 cascade components   总被引:8,自引:0,他引:8  
Mitogen-activated protein (MAP) kinase cascades are involved in transmitting signals that are generated at the cell surface into the cytosol and nucleus and consist of three sequentially acting enzymes: a MAP kinase, an upstream MAP/extracellular signal-regulated protein kinase (ERK) kinase (MEK), and a MEK kinase (MEKK). Protein-protein interactions within these cascades provide a mechanism to control the localization and function of the proteins. MEKK1 is implicated in activation of the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and ERK1/2 MAP kinase pathways. We showed previously that MEKK1 binds directly to JNK/SAPK. In this study we demonstrate that endogenous MEKK1 binds to endogenous ERK2, MEK1, and another MEKK level kinase, Raf-1, suggesting that it can assemble all three proteins of the ERK2 MAP kinase module.  相似文献   

7.
Integrin activation generates different signalings in a cell type-dependent manner and stimulates cell proliferation through the Ras/Raf-1/Mek/Erk pathway. In this study, we demonstrate that integrin stimulation by fibronectin (FN), besides activating the Ras/Erk pathway, generates an auxiliary calcium signal that activates calmodulin and the Ca2+/calmodulin-dependent protein kinase II (CaMKII). This signal regulates Raf-1 activation by Ras and modulates the FN-stimulated extracellular signal-regulated kinase (Erk-1/2). The binding of soluble FN to integrins induced increase of intracellular calcium concentration associated with phosphorylation and activation of CaMKII. In two different cell lines, inhibition of CaMKII activity by specific inhibitors inhibited Erk-1/2 phosphorylation. Whereas CaMK inhibition affected neither integrin-stimulated Akt phosphorylation nor p21Ras or Mek-1 activity, it was necessary for Raf-1 activity. FN-induced Raf-1 activity was abrogated by the CaMKII specific inhibitory peptide ant-CaNtide. Integrin activation by FN induced the formation of a Raf-1/CaMKII complex, abrogated by inhibition of CaMKII. Active CaMKII phosphorylated Raf-1 in vitro. This is the first demonstration that CaMKII interplays with Raf-1 and regulates Erk activation induced by Ras-stimulated Raf-1. These findings also provide evidence supporting the possible existence of cross-talk between other intracellular pathways involving CaMKII and Raf-1.  相似文献   

8.
IQGAP1 regulates cytoskeletal dynamics through interactions with the Rho family GTPases Rac1 and Cdc42, F-actin, and beta-catenin. Calmodulin interaction with IQ motifs of IQGAP1 negatively influences these IQGAP1 interactions. Although, calmodulin interacts with IQGAP1 in the absence of Ca(2+) and was suggested to exhibit reduced binding when Ca(2+) bound, recent reports show substantially greater binding when Ca(2+) is present. Binding evaluations have primarily relied on IQGAP1 interaction with calmodulin conjugated to Sepharose 4B. In this study we evaluated the Ca(2+)-dependence of calmodulin interaction with native IQGAP1 using a series of independent biochemical approaches. We found the apparent binding of calmodulin to IQGAP1 was Ca(2+)-independent, being between 5- and 20-fold greater in the absence than in the presence of Ca(2+). In addition, calmodulin interaction with IQGAP1 was negatively regulated by buffer [Ca(2+)] (IC(50)=3.4x10(-7)M). Regulation was specific to Ca(2+), as Ba(2+) was approximately 400-fold less effective than Ca(2+) at modulating the interaction. Moreover, testing of calmodulin mutants demonstrated that apocalmodulin tightly binds IQGAP1 and that the N- and C-terminal pair of EF hands are important for Ca(2+) sensitivity. These data indicate that calmodulin may disassemble from IQGAP1 to facilitate IQGAP1 interaction with effectors of cytoskeletal reorganization during conditions of cell activation that promote increased cytosolic [Ca(2+)].  相似文献   

9.
Cadherin-mediated interactions are integral to synapse formation and potentiation. Here we show that N-cadherin is required for memory formation and regulation of a subset of underlying biochemical processes. N-cadherin antagonistic peptide containing the His-Ala-Val motif (HAV-N) transiently disrupted hippocampal N-cadherin dimerization and impaired the formation of long-term contextual fear memory while sparing short-term memory, retrieval, and extinction. HAV-N impaired the learning-induced phosphorylation of a distinctive, cytoskeletally associated fraction of hippocampal Erk-1/2 and altered the distribution of IQGAP1, a scaffold protein linking cadherin-mediated cell adhesion to the cytoskeleton. This effect was accompanied by reduction of N-cadherin/IQGAP1/Erk-2 interactions. Similarly, in primary neuronal cultures, HAV-N prevented NMDA-induced dendritic Erk-1/2 phosphorylation and caused relocation of IQGAP1 from dendritic spines into the shafts. The data suggest that the newly identified role of hippocampal N-cadherin in memory consolidation may be mediated, at least in part, by cytoskeletal IQGAP1/Erk signaling.  相似文献   

10.
11.
Human epidermal growth factor receptor 2 (HER2), a member of the ErbB family of receptor tyrosine kinases, has defined roles in neoplastic transformation and tumor progression. Overexpression of HER2 is an adverse prognostic factor in several human neoplasms and, particularly in breast cancer, correlates strongly with a decrease in overall patient survival. HER2 stimulates breast tumorigenesis by forming protein-protein interactions with a diverse array of intracellular signaling molecules, and evidence suggests that manipulation of these associations holds therapeutic potential. To modulate specific HER2 interactions, the region(s) of HER2 to which each target binds must be accurately identified. Calmodulin (CaM), a ubiquitously expressed Ca2+ binding protein, interacts with multiple intracellular targets. Interestingly, CaM binds the juxtamembrane region of the epidermal growth factor receptor, a HER2 homolog. Here, we show that CaM interacts, in a Ca2+-regulated manner, with two distinct sites on the N-terminal portion of the HER2 intracellular domain. Deletion of residues 676-689 and 714-732 from HER2 prevented CaM-HER2 binding. Inhibition of CaM function or deletion of the CaM binding sites from HER2 significantly decreased both HER2 phosphorylation and HER2-stimulated cell growth. Collectively, these data suggest that inhibition of CaM-HER2 interaction may represent a rational therapeutic strategy for the treatment of patients with breast cancer. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   

12.
Lipid transfer proteins (LTPs) are a protein family found in plants with a variety of functions. In addition to lipid binding, LTPs also bind to calmodulin and Ca2+-dependent protein kinase (CDPK), which are calcium signal transducers. For the first time, we identified glyceraldehyde-3- phosphate dehydrogenase (GAPDH) as a novel binding protein of LTP-CaMBP10 in Chinese cabbage. This binding was confirmed using multiple biochemical approaches. The effects of this interaction on GAPDH activity were assessed for both recombinant and endogenous GAPDH proteins. LTP-CaMBP10 does not appear to affect nicotinamide adenine dinucleotide (NAD)-dependent GAPDH activity. In contrast, it significantly suppresses nicotinamide adenine dinucleotide phosphate (NADPH) consumption by GAPDH in a dosage-dependent manner. This result indicated a specific role of GAPDH in regulating LTP functions and implicating crosstalk between LTP-dependent and GAPDH-dependent biological events.  相似文献   

13.
In the central nervous system, calcineurin has been implicated in a number of Ca2+-sensitive pathways, including the regulation of neurotransmitter release and modulation of synaptic plasticity. PDZ domain-containing proteins also play an important role in the targeting and clustering of synaptic proteins. Using a yeast two-hybrid screen, we herein identified the PDZ domain-containing protein PICK1 as a specific interactor of calcineurin B. The interaction of calcineurin B and PICK1 was confirmed by GST pull-down assay in HEK293 cells and immunoprecipitation using rat brain lysate. Calcineurin B contains the consensus C-terminal peptide sequence required for interacting with the PDZ domain. The deletion of this sequence was sufficient to abolish the interaction between calcineurin B and PICK1. In addition, the knockdown of PICK1 by RNA interference inhibited the calcineurin-dependent activation of NFAT in PC12 cells. These results suggest that PICK1 may be a positive regulator of calcineurin in the central nervous system.  相似文献   

14.
Genetic studies have implicated amyloid precursor protein (APP) in the pathogenesis of Alzheimer's disease. While accumulating lines of evidence indicate that APP has various functions in cells, little is known about the proteins that modulate its biological activity. Toward this end, we employed a two-hybrid system to identify potential interacting factors. We now report that fibulin-1, which contains repetitive Ca(2+)-binding EGF-like elements, binds to APP at its amino-terminal growth factor-like domain, the region that is responsible for its neurotrophic activities. Fibulin-1 expression in the brain is confined to neurons, and is not expressed significantly by astrocytes or microglia. Direct binding of fibulin-1 to the secreted form of APP (sAPP) was demonstrated with a pull-down assay using fragments of both fibulin-1 fused with glutathione-S transferase and sAPP, produced in bacteria and yeast, respectively. The fibulin-1/sAPP heteromer was shown to form in the conditioned medium of transfected COS-7 cells. Furthermore, fibulin-1 blocks sAPP-mediated proliferation of primary cultured rat neural stem cells. These results suggest that fibulin-1 may play a significant role in modulating the neurotrophic activities of APP.  相似文献   

15.
Lipotoxicity, an important factor in the pathogenesis of diabetes, leads to defective β-cell proliferation and increased apoptosis. Glucagon-like peptide-1 (GLP-1) analogs, which are used to treat type 2 diabetes, reduce endoplasmic reticulum stress and inflammation in pancreatic β-cells and improve their survival. However, their effects on the heat shock response (HSR) have not been elucidated yet. We investigated whether the GLP-1 analog exendin-4 exerts its protective effect by modulating the HSR and mitogen-activated protein kinases (MAPKs) in BTC-6 mouse pancreatic cells under palmitic acid (PA) stress. Expression patterns were analyzed using mass spectrometry, Western blotting, and qRT-PCR in the presence of 250 or 400 μM PA and 100 nM exendin-4. Additionally, we measured MAPK expression and phosphorylation using qRT-PCR and Western blotting, respectively. Upregulation of heat shock protein (HSP), notably HSP72, in the presence of PA, was attenuated by exendin-4. Despite the absence of global effects on the HSR system, exendin-4 attenuated the expression of other non-classical HSPs (GRP94, DNAJA1, and DNAJB6) in the presence of PA. Regarding MAPKs, only extracellular signal-regulated kinase (ERK) phosphorylation was highly increased by exendin-4 in both the presence and absence of PA. Furthermore, exendin-4 significantly alleviated PA-induced cell death, which was further confirmed with proteomics analysis where key cellular functions, including cellular growth, assembly, and organization, were improved by exendin-4 treatment. Thus, our results expand the protective role of GLP-1 analogs to include other cellular mechanisms involved in restoring normal β-cell homeostasis.  相似文献   

16.
17.
The Rho-GTPase Cdc42 is important for the establishment and maintenance of epithelial polarity. Signaling from Cdc42 is propagated via its effector molecules that specifically bind to Cdc42 in the GTP-bound form. The cell-cell contact regulator and actin-binding protein IQGAP1 is described as effector of Cdc42 and Rac. Unexpectedly, we show in this study that IQGAP1 bound also directly nucleotide-depleted Cdc42 (Cdc42-ND). This interaction was enhanced in the presence of phosphatase inhibitors and in epithelial cells without cell-cell contacts. Tandem mass spectrometry analysis and immunoprecipitation experiments revealed that IQGAP1 was Ser1443-phosphorylated in vivo, potentially by protein kinase Cepsilon and upon loss of cell-cell contacts. In addition, we identified two independent domains of the IQGAP1 C terminus that bound exclusively Cdc42-ND. These domains interacted with each other, favoring the binding to Cdc42-GTP. Moreover, phosphorylation on Ser1443 strongly inhibited this intramolecular interaction. Thus, we unraveled a molecular mechanism that reveals a novel type of Rho-GTPase regulator. We propose that, depending on its phosphorylation state, IQGAP1 might serve as an effector or sequester nucleotide-free Cdc42 to prevent signaling.  相似文献   

18.
Podocyte injury may contribute to the pathogenesis of diabetic nephropathy (DN), but the underlying mechanism of hyperglycemia induced podocyte damage is not fully understood. The Ras GTPase-activating-like protein IQGAP1 is associated to the slit diaphragm proteins and the actin cytoskeleton in podocyte. Here, we studied IQGAP1 expression alterations in human DN biopsies and extracellular signal-regulated kinase (ERK)-dependent pathways of IQGAP1 expression in podocyte under high glucose (HG) media. In vivo, analysis of renal biopsies from patients with DN revealed a significant reduction in IQGAP1 expression compared to controls. In vitro, IQGAP1 mRNA and protein expression were observed to decline under HG media at 48 h. But phosphorylation of ERK1/2 was activated under HG media at 24 h and 48 h. However, HG-induced downregulation of IQGAP1 protein was attenuated by specific ERK1/2 activation inhibitor PD98059. Taken together, these results highlight the importance of IQGAP1 in DN, and suggest that IQGAP1 expression in podocyte under HG media is modulated by the ERK1/2 pathway, which may lead to the future development of therapies targeting IQGAP1 dysfunction in podocytes in DN.  相似文献   

19.
The transmembrane protein with epidermal growth factor (EGF) and two follistatin (FS) motifs 2 (TMEFF2) has a limited tissue distribution with strong expression only in brain and prostate. While TMEFF2 is overexpressed in prostate cancer indicating an oncogenic role, several studies indicate a tumor suppressor role for this protein. This dual mode of action is, at least in part, the result of metalloproteinase-dependent shedding that generates a soluble TMEFF2 ectodomain with a growth promoting function. While recent studies have shed some light on the biology of different forms of TMEFF2, little is known about the molecular mechanisms that influence its oncogenic/tumor suppressive function. In several non-prostate cell lines, it has been shown that a recombinant form of the TMEFF2 ectodomain can interact with platelet derived growth factor (PDGF)-AA to suppress PDGF receptor signaling and can promote ErbB4 and ERK1/2 phosphorylation. However, the role of the full length TMEFF2 in these pathways has not been examined. Using prostate cell lines, here we examine the role of TMEFF2 in ERK and Akt activation, two pathways implicated in prostate cancer progression and that have been shown to cross talk in several cancers. Our results show that different forms of TMEFF2 distinctly affect Akt and ERK activation and this may contribute to a different cellular response of either proliferation or tumor suppression.  相似文献   

20.
The ADP-ribosylation factor 6 (ARF6) small GTPase functions as a GDP/GTP-regulated switch in the pathways that stimulate actin reorganization and membrane ruffling. The formation of active ARF6GTP is stimulated by guanine nucleotide exchange factors (GEFs) such as cytohesins, which translocate to the plasma membrane in agonist-stimulated cells by binding the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate through the pleckstrin homology domain with subsequent ARF6 activation. Using cytohesin 2 as bait in yeast two-hybrid screening, we have isolated a cDNA encoding a protein termed interaction protein for cytohesin exchange factors 1 (IPCEF1). Using yeast two-hybrid and glutathione S-transferase pull-down assays coupled with deletion mutational analysis, the specific domains required for the cytohesin 2-IPCEF1 interaction were mapped to the coiled-coil domain of cytohesin 2 and the C-terminal 121 amino acids of IPCEF1. IPCEF1 also interacts with the other members of the cytohesin family of ARF GEFs, suggesting that the interaction with IPCEF1 is highly conserved among the cytohesin family of ARF GEFs. The interaction of cytohesin 2 and IPCEF1 in mammalian cells was demonstrated by immunoprecipitation. Immunofluorescence analysis revealed that IPCEF1 co-localizes with cytohesin 2 to the cytosol in unstimulated cells and translocates to the plasma membrane via binding to cytohesin 2 in epidermal growth factor-stimulated cells. However, a deletion mutant of IPCEF1 that lacks the cytohesin 2 binding site failed to co-migrate with cytohesin 2 to the membrane in stimulated cells. The functional significance of the IPCEF1-cytohesin 2 interaction is demonstrated by showing that IPCEF1 increases the in vitro and in vivo stimulation of ARFGTP formation by cytohesin 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号