首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Methods are described which provide good recoveries of non-degraded chloroplast and non-chloroplast RNAs from Euglena gracilis var. bacillaris. These have been characterized by comparing the RNA from W3BUL (an aplastidic mutant of Euglena), with that of wild-type cells which have been resolved into chloroplast and non-chloroplast fractions. Using E. coli RNA as a standard, the RNAs from W3BUL and from the non-chloroplast fraction of green cells exhibit optical density peaks, upon sucrose gradient centrifugation, at 4S, 10S, and 19S. The chloroplast fraction exhibits optical density peaks at 19S and 14S with the 19S component predominating. Application of various techniques for the separation of RNAs to the problem of separating the chloroplast and non-chloroplast RNAs, without prior separation of the organelle, have not proven successful.

32Pi is readily incorporated into RNA by cells undergoing light-induced chloroplast development, and fractionation at the end of development reveals that although chloroplast RNAs have a higher specific activity, the other RNAs of the cells are significantly labeled as well. The succession of labeling patterns of total cellular RNA as light-induced chloroplast development proceeds are displayed and reveal that all RNA species mentioned above eventually become labeled. In contrast, cells kept in darkness during this period incorporate little 32Pi into any RNA fraction. In addition, a heavy RNA component, designated as 28S, while representing a negligible fraction of the total RNA, becomes significantly labeled during the first 24 hours of illumination. While there is light stimulated uptake of 32Pi into the cells, this uptake is never limiting in the light or dark, for RNA labeling.

On the basis of these findings, we suggest that extensive activation of non-chloroplast RNA labeling during chloroplast development is the result of the activation of the cellular synthetic machinery external to the chloroplast necessary to provide metabolic precursors for plastid development. Thus the plastid is viewed as an auxotrophic resident within the cell during development. Other possibilities for interaction at this and other levels are also discussed.

  相似文献   

4.
5.
6.
The effect of chloramphenicol (CAP) on cell division and organelle ultrastructure was studied during light-induced chloroplast development in the Chrysophyte alga, Ochromonas danica. Since the growth rate of the CAP-treated cells is the same as that of the control cells for the first 12 hr in the light, CAP is presumed to be acting during that interval solely by inhibiting protein synthesis on chloroplast and mitochondrial ribosomes. CAP markedly inhibits chloroplast growth and differentiation. During the first 12 hr in the light, chlorophyll synthesis is inhibited by 93%, the formation of new thylakoid membranes is reduced by 91%, and the synthesis of chloroplast ribosomes is inhibited by 81%. Other chloroplast-associated abnormalities which occur during the first 12 hr and become more pronounced with extended CAP treatment are the presence of prolamellar bodies and of abnormal stacks of thylakoids, the proliferation of the perinuclear reticulum, and the accumulation of dense granular material between the chloroplast envelope and the chloroplast endoplasmic reticulum. CAP also causes a progressive loss of the mitochondrial cristae, which is paralleled by a decline in the growth rate of the cells, but it has no effect on the synthesis of mitochondrial ribosomes. We postulate that one or more chloroplast ribosomal proteins are synthesized on chloroplast ribosomes, whereas mitochondrial ribosomal proteins are synthesized on cytoplasmic ribosomes.  相似文献   

7.
SYNOPSIS. Chloroplast development is inhibited in Euglena gracilis strain Z, when greened in a medium containing glucose. This inhibition is reflected not only in the pattern of chlorophyll accumulation but also in the chloroplast ultrastructure and activities of the 2 light reactions of photosynthesis. Chloroplasts of cells greening in the presence of glucose are delayed in déveloping certain structures. Photosystem I activity develops at about the same rate as that of the controls during the first 48 h of greening, after which it develops at a slower rate. The rate of development of photosystem II activity in cells greening in a glucose medium lags considerably behind that of the controls until the later hours of greening. There are similarities between glucose inhibition and chloramphenicol inhibition of chloroplast development. Glucose may inhibit a step in chloroplast development ultimately controlled by the chloroplast genome.  相似文献   

8.
9.
Abstract Photosynthetic electron transport activities and the ability to generate and maintain a trans-thylakoid proton electrochemical gradient were examined during chloroplast development in 4-day-old wheat leaves grown under a diurnal light regime. Polarographic and spectropholometric studies on leaf tissue demonstrated that poorly developed chloroplasls at the leaf base could photo-oxidize water and transfer electrons from photosystem 2 to photosystem 1. The capacity for non-cyclic whole-chain electron transport increased during chloroplast development. Thylakoids isolated from the leaf base, although capable of pumping protons into the inlrathylakoid space, could not maintain a trans-membrane proton electrochemical gradient; this ability developed at later stages of chloroplast biogenesis in the leaf. The implications of these results for the energetics of the developing leaf are discussed.  相似文献   

10.
11.
Light-grown cells which contain fully developed chloroplasts were found to be more resistant to gamma-irradiation than dark-grown cells which are devoid of chloroplasts. The radio-resistance of dark-grown cells progressively increased during light-induced development of chloroplasts and, conversely, radio-resistance of light-grown cells decreased progressively with chloroplast de-development during growth in the dark. The presence of chloroplasts seemed to play a major role in the capacity of cells to recover from radiation damage, the efficiency of cellular recovery being correlatable with the degree of chloroplast development.  相似文献   

12.
植物叶绿素缺失突变体在自然界中广泛存在,是研究叶绿素形成和叶绿体发育等代谢途径的良好材料.该文主要从分子层面上阐述了叶绿素缺失突变体产生的原因,如叶绿素合成受阻、叶绿体光合蛋白合成或输入受阻、叶绿体RNA转录物未被编辑、过量光损伤和卟啉循环各物质之间的相互抑制,并归纳了近年来鉴定出来的一些叶绿素缺失突变基因,简要介绍了叶绿素和叶绿体之间的关系以及叶绿素缺失突变体的应用.  相似文献   

13.
J L Gallois  P Achard  G Green  R Mache 《Gene》2001,274(1-2):179-185
Many chloroplast genes of cyanobacterial origin have been transferred to the nucleus during evolution and their products are re-addressed to chloroplasts. The RPL21 gene encoding the plastid r-protein L21 has been lost in higher plant chloroplast genomes after the divergence from bryophytes. Based on phylogenetic analysis and intron conservation, we now provide evidence that in Arabidopsis a nuclear RPL21c gene of mitochondrial origin has replaced the chloroplast gene. The control of expression of this gene has been adapted to the needs of chloroplast development by the acquisition of plastid-specific regulatory promoter cis-elements.  相似文献   

14.
15.
Primary leaves of Phaseolus vulgaris show concomitant changes in phospholipid, galactolipid, chlorophyll and fresh weight during leaf development from 3 to 32 days after planting. Phosphatidyl choline, phosphatidyl ethanolamine, and phosphatidyl inositol show only small changes on a mole per cent lipid phosphate basis during leaf development. The chloroplast lipids, phosphatidyl glycerol, monogalactosyl diglyceride (MGDG) and digalactosyl diglyceride (DGDG) all show marked increases and decreases which are coincident with chloroplast development. The decline in the leaf content of chloroplast polar lipids and chlorophyll become evident upon reaching maximal leaf size. The molar ratio of galactolipids (MGDG/DGDG), reaches a maximum value of 2.3 in expanding leaves, but steadily declines during senescence to a minimum value of 1.5 at abscission. The declining ratio is caused by a preferential loss of MGDG in the senescing leaves.  相似文献   

16.
Cytoplasmic and chloroplast ribosomal proteins were isolated from Euglena gracilis and analyzed on polyacrylamide gels. Cytoplasmic ribosomes appear to contain 75 to 100 proteins ranging in molecular weight from 10,200 to 104,000, while chloroplast ribosomes appear to contain 35 to 42 proteins with molecular weights ranging from 9,700 to 57,900. This indicates that the cytoplasmic ribosomes are similar in composition to other eucaryotic ribosomes, while chloroplast ribosomes have a protein composition similar to the 70S procaryotic ribosome. The kinetics of light-induced labeling of cytoplasmic ribosomal proteins during chloroplast development has been determined, and the results are compared with the kinetics of ribosomal RNA synthesis.  相似文献   

17.
There are three iron superoxide dismutases in Arabidopsis thaliana: FE SUPEROXIDE DISMUTASE1 (FSD1), FSD2, and FSD3. Their biological roles in chloroplast development are unknown. Here, we show that FSD2 and FSD3 play essential roles in early chloroplast development, whereas FSD1, which is found in the cytoplasm, does not. An fsd2-1 fsd3-1 double mutant had a severe albino phenotype on agar plates, whereas fsd2 and fsd3 single knockout mutants had pale green phenotypes. Chloroplast development was arrested in young seedlings of the double mutant. The mutant plants were highly sensitive to oxidative stress and developed increased levels of reactive oxygen species (ROS) during extended darkness. The FSD2 and FSD3 proteins formed a heteromeric protein complex in the chloroplast nucleoids. Furthermore, transgenic Arabidopsis plants overexpressing both the FSD2 and FSD3 genes showed greater tolerance to oxidative stress induced by methyl viologen than did the wild type or single FSD2- or FSD3-overexpressing lines. We propose that heteromeric FSD2 and FSD3 act as ROS scavengers in the maintenance of early chloroplast development by protecting the chloroplast nucleoids from ROS.  相似文献   

18.
The cellular content of chloroplast DNA in Euglena gracilis has been quantitatively determined. DNA was extracted from Euglena cells at various stages of chloroplast development and renatured in the presence of trace amounts of 3H-labeled chloroplast DNA. From the kinetics of renaturation of the 3H-labeled chloroplast DNA, compared with the kinetics of renaturation of excess nonradioactive chloroplast DNA, the fraction of cellular DNA represented by chloroplast DNA was calculated. The content of chloroplast DNA was found to increase from 4.9 to 14.6% of cellular DNA during light-induced chloroplast development. Correcting for the change in DNA mass per cell, the number of copies of chloroplast DNA is found to vary from 1400 to 2900 per cell. During this developmental transition, the cellular content of the chloroplast ribosomal RNA genes varies from 1900 to 5200 copies per cell. The ratio of the number of copies of rRNA genes to chloroplast genomes per cell remains in the range of 1-2 throughout chloroplast development, ruling out selective amplification of chloroplast rRNA genes as a means of regulation of rRNA gene expression. Direct measurement of the number of rRNA cistrons per 9.2 X 10(7) dalton genome yields a value of 1 or 2.  相似文献   

19.
In higher plants, plastid and mitochondrial genomes occur at high copy numbers per cell. Several recent publications have suggested that, in higher plants like Arabidopsis and maize, chloroplast DNA is virtually absent in mature and old leaves. This conclusion was mainly based on DAPI staining of isolated chloroplasts. If correct, the finding that chloroplasts in mature leaves lack DNA would change dramatically our understanding of gene expression, mRNA stability and protein stability in chloroplasts. In view of the wide implications that the disposal of chloroplast DNA during leaf development would have, we have reinvestigated the age dependency of genome copy numbers in chloroplasts and, in addition, tested for possible changes in mitochondrial genome copy number during plant development. Analyzing chloroplast and mitochondrial DNA amounts in Arabidopsis and tobacco plants, we find that organellar genome copy numbers remain remarkably constant during leaf development and are present in essentially unchanged numbers even in the senescing leaves. We conclude that, during leaf development, organellar gene expression in higher plants is not significantly regulated at the level of genome copy number and we discuss possible explanations for the failure to detect DNA in isolated chloroplasts stained with DAPI.  相似文献   

20.
The protein coding regions of plastid mRNAs in higher plants are generally flanked by 3' inverted repeat sequences. In spinach chloroplast mRNAs, these inverted repeat sequences can fold into stem-loop structures and serve as signals for the correct processing of the mature mRNA 3' ends. The inverted repeat sequences are also required to stabilize 5' upstream mRNA segments, and interact with chloroplast protein in vitro. To dissect the molecular components involved in chloroplast mRNA 3' end processing and stability, a spinach chloroplast protein extract containing mRNA 3' end processing activity was fractionated by FPLC and RNA affinity chromatography. The purified fraction consisted of several proteins and was capable of processing the 3' ends of the psbA, rbcL, petD and rps14 mRNAs. This protein fraction was enriched for a 28 kd RNA-binding protein (28RNP) which interacts with both the precursor and mature 3' ends of the four mRNAs. Using specific antibodies to this protein, the poly(A) RNA-derived cDNA for the 28RNP was cloned and sequenced. The predicted amino acid sequence for the 28RNP reveals two conserved RNA-binding domains, including the consensus sequences RNP-CS1 and CS2, and a novel acidic and glycine-rich N-terminal domain. The accumulation of the nuclear-encoded 28RNP mRNA and protein are developmentally regulated in spinach cotyledons, leaves, root and stem, and are enhanced during light-dependent chloroplast development. The general correlation between accumulation of the 28RNP and plastid mRNA during development, together with the result that depletion of the 28RNP from the chloroplast protein extract interferes with the correct 3' end processing of several chloroplast mRNAs, suggests that the 28RNP is required for plastid mRNA 3' end processing and/or stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号