首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of different constant soil moisture levels (90, 60, 30% and 90, 60, 40% respectively, of the maximum capillary capacity) on the vegetative growth of maize was studied by the methods of growth analysis. The constant soil moisture in vegetation pots was maintained by means of the injection method. The constantly decreased soil moisture was applied in one experiment just from the sowing of germinated corns and in the other from the phase of 4–6 leaves. In both the cases plants responded to the different soil moisture levels by a progressively lower growth rate of the total dry weight according to the degree of soil moisture lowering. When the constant soil moistures were applied from the sowing, the differences in the relative growth rate (R.G.R.) were caused mainly by lower leaf area ratio (L.A.R.) values. In the case of constantly lowered soil moistures from the phase of 4–6 leaves, the differences in R.G.R. were caused by lower net assimilation rate (N.A.R.). When the constant soil moisture of 40% was applied from the sowing, the changes in N.A.R. showed the characteristic features of adaptation to unfavourable conditions.  相似文献   

2.
A study was made of the effect of different constant soil moisture (90, 60 and 30 or 40% maximum capillary capacity) on the net assimilation rate (N.A.R.) in maize in relation to changes in relative transpiration (R.T.), water saturation deficit of the leaves (W.S.D.) and osmotic pressure of the cell sap (O.P.). The soil moisture was maintained constant either from the planting of the germinating grain, or from the phase of 4–6 leaves. An attempt was made to interpret the mechanism of action of water deficit on photosynthesis and at a rough differentiation between the indirect effect through changes in internal diffusive resistance to carbon dioxide and the direct effect on the hydration of the photosynthetizing tissue. In plants exposed to different constant soil moisture levels from the phase of 4–6 leaves, the initial difference in N.A.R. corresponding to the degree of lowering of soil moisture gradually evened out during the vegetation season. On applying different constant soil moisture levels from the time of planting no marked differences in N.A.R. were found between plants cultivated at high values of soil moisture (60% and 90%). In plants cultivated from planting at 40% soil moisture, the course of changes in N.A.R. was qualitatively different from that of the above two variants and corresponded more or less to changes characteristic for the process of adaptation to unfavourable conditions. From the analogous course of N.A.R. and R.T. it can be assumed that in all cases the intensity of photosynthesis was very markedly influenced by changes in diffusive resistance to carbon dioxide. On the basis of an analysis of changes in O.P. of the cell sap and W.S.D. of the leaf tissue, the assumption was made that in plants cultivated from planting at 40% and to some extent at 60% soil moisture, irreversible adaptation changes occurred in the structural conditions of photosynthesis as a result of continuous dehydration. In plants cultivated at similar soil moisture levels from the phase of 4–6 leaves, the changes in the intensity of photosynthesis were more likely caused by actual dehydration of the photosynthetizing tissue.  相似文献   

3.
The natural spread of Erysiphe cichoracearum was assessed weekly on alternate leaves of irrigated and non-irrigated tobacco plants of Kutsaga 51 variety, grown in field plots in 1962-63. Leaf area, air temperature and humidity within the plots, relative turgidity of the leaves and soil moisture were also measured. Leaves emerged over a period of 37 days. A minimum of 29 days elapsed between leaf emergence and infection; irrigation lengthened this period by 2–6 days for leaves 2–6 and shortened it by 2–10 days for leaves 10–18. The duration of the initial resistant phase, in leaves at comparable stalk positions, appeared to be directly proportional to the eventual size of the leaves at reaping. Leaves were not infected until they were almost fully expanded. The longest dry period, when most irrigation water was applied, occurred when most lower leaves (2–8) were fully expanded and already infected; upper leaves (10–18)w ere then still expanding and not yet infected. Irrigation increased infection in all leaves; it increased the growth of the pathogen during dry weather and the subsequent susceptibility of leaves that were still actively expanding but not yet infected. Irrigation increased the percentage of susceptible leaf area infected, of intact plants, threefold and that of topped plants ninefold. Topped plants had less infection than intact ones.  相似文献   

4.
土壤水分胁迫对燕麦叶片渗透调节物质含量的影响   总被引:11,自引:0,他引:11  
以旱棚内盆栽的'内农大莜一号'燕麦品种为材料,测定了其不同水分胁迫下各生育期叶片的脯氨酸、可溶性糖含量和细胞膜相对透性,分析土壤含水量对燕麦叶片渗透调节物质的影响,以明确燕麦不同生育时期的抗旱特性.结果表明:(1)随着土壤相对含水率的下降,燕麦各生育期叶片脯氨酸含量、可溶性糖含量、细胞膜相对透性均呈上升趋势.(2)随着生育期的推进,燕麦叶片脯氨酸含量在30%和45%土壤含水量下呈持续上升趋势,而在含水量 60%、75%、90%处理下则于生育前期上升,灌浆期略有下降;随着生育期的延续,可溶性糖的含量呈先升后降的抛物线型变化,且其最大值随水分胁迫强度增加而提前,含水量 30%和45%处理的最大值均出现在拔节期,含水量60%和75%处理则分别出现在孕穗期和开花期;随着生育期的延续,各处理燕麦叶片的细胞膜相对透性均呈持续上升趋势.可见,水分胁迫能诱导燕麦叶片渗透调节物质的积累,且增幅随着胁迫强度的增加而上升,从而使燕麦表现出较强的抗旱性.  相似文献   

5.
Sugar beet were grown for short periods with different amounts of moisture in the soil and air. Growing plants in wet soil (23 % moisture on dry weight) compared with dry soil (15% moisture) increased growth of the shoots and roots and plant dry weights by 15% in young plants and 10% in mature plants. Growing plants in wet air containing 10.9 g m-3 of water (equivalent to a saturation deficit of 2.5 mb) compared with dry air containing 6.4 g m-3 of water (saturation deficit = 8.5 mb) increased the dry weights of both young and mature plants by 8%, mostly by increasing the sizes of their storage roots. Wet air and wet soil increased the net assimilation rates of both young and mature plants. Wet soil, but not wet air, increased leaf areas of young plants by accelerating leaf expansion, and both increased the leaf area of mature plants by slowing senescence of the older leaves. Wet soil increased the water potential of the leaves of both young and mature plants and, by doing so, increased their stomatal conductances and rates of photosynthesis. Wet air also increased stomatal conductances and rates of photosynthesis of leaves of plants of both ages, but without changing their water potentials. Stomatal conductances and photosynthetic rates were greater for young leaves than mature on the same plant and at the same water potential. It is suggested that at certain stages in the crops growth photosynthetic efficiency could be increased by applying additional water as a mist to increase the moisture content of the air around the crop.  相似文献   

6.
Patterns in soil moisture availability affect plant survival, growth and fecundity. Here we link patterns in soil moisture to physiological and demographic consequences in Florida scrub plants. We use data on different temporal scales to (1) determine critical soil moisture content that leads to loss of turgor in leaves during predawn measurements of leaf water status (Ψ crit), (2) describe the temporal patterns in the distribution of Ψ crit, (3) analyze the strength of relationship between rainfall and soil moisture content based on 8 years of data, (4) predict soil moisture content for 75 years of rainfall data, and (5) evaluate morphological, physiological and demographic consequences of spring 2006 drought on dominant shrubs in Florida scrub ecosystem in the light of water-uptake depth as determined by stable isotope analysis (δ18O). Based on 1998–2006 data, the soil moisture content at 50 cm depth explained significant variation in predawn leaf water potential of two dominant shrubs, Quercus chapmanii and Ceratiola ericoides (r 2?=?0.69). During 8 years of data collection, leaves attained Ψ crit only during the peak drought of 2000 when the soil moisture fell below 1% by volume at 50 and 90 cm depth. Precipitation explained a significant variation in soil moisture content (r 2?=?0.62). The patterns in predicted soil moisture for 75 year period, suggested that the frequency of drought occurrence has not increased in time. In spring 2006, the soil reached critical soil moisture levels, with consequences for plant growth and physiological responses. Overall, 24% of plants showed no drought-induced damage, 51% showed damage up to 50%, 21% had intense leaf shedding and 2% of all plants died. Over the drought and recovery period (May–October 2006), relative height growth was significantly lower in plants with greater die-back. All species showed a significant depression in stomatal conductance, while all but deep-rooted palms Sabal etonia and Serenoa repens showed significantly lower predawn (Ψ pd) and mid-day (Ψ md) leaf water potential in dry compared to wet season. Plants experiencing less severe die-back exhibited greater stomatal conductance, suggesting a strong relationship between physiology and morphology. Based on results we suggest that the restoration efforts in Florida scrub should consider the soil moisture requirements of key species.  相似文献   

7.
The hypothesis that electric and hydraulic long-distance signals modify photosynthesis and stomatal aperture upon re-irrigation in intact drought-stressed plants was examined. Maize plants (Zea mays L.) were exposed to drought conditions by decreasing the soil water content to 40-50% of field capacity. The decrease in water content resulted in a decline in stomatal conductance to 50-60% of the level in well-watered plants. Re-irrigation of the plants initiated both hydraulic and electric signals, followed by a two-phase response of the net CO2 uptake rate and stomatal conductance of leaves. The transitional first phase (phase 1) is characterized by a rapid decrease in both levels. In the second phase (phase 2), both parameters gradually increase to levels above those of drought-stressed plants. Elimination of either the hydraulic signal by compensatory pressure application to the root system, or of the electric signal by cooling of the leaf blade gave evidence that the two signals (1) propagated independently from each other and (2) triggered the two-phase response in leaf gas exchange. The results provided evidence that the hydraulic signal initiated a hydropassive decrease in stomatal aperture and for the involvement of electric signals in the regulation of photosynthesis of drought-stressed plants.  相似文献   

8.
Aims Plants are able to influence their growing environment by changing biotic and abiotic soil conditions. These soil conditions in turn can influence plant growth conditions, which is called plant–soil feedback. Plant–soil feedback is known to be operative in a wide variety of ecosystems ranging from temperate grasslands to tropical rain forests. However, little is known about how it operates in arid environments. We examined the role of plant–soil feedbacks on tree seedling growth in relation to water availability as occurring in arid ecosystems along the west coast of South America.Methods In a two-phased greenhouse experiment, we compared plant–soil feedback effects under three water levels (no water, 10% gravimetric moisture and 15% gravimetric moisture). We used sterilized soil inoculated with soil collected from northwest Peru (Prosopis pallida forests) and from two sites in north-central Chile (Prosopis chilensis forest and scrublands without P. chilensis).Important findings Plant–soil feedbacks differed between plant species and soil origins, but water availability did not influence the feedback effects. Plant–soil feedbacks differed in direction and strength in the three soil origins studied. Plant–soil feedbacks of plants grown in Peruvian forest soil were negative for leaf biomass and positive for root length. In contrast, feedbacks were neutral for plants growing in Chilean scrubland soil and positive for leaf biomass for those growing in Chilean forest soil. Our results show that under arid conditions, effects of plant–soil feedback depend upon context. Moreover, the results suggest that plant–soil feedback can influence trade-offs between root growth and leaf biomass investment and as such that feedback interactions between plants and soil biota can make plants either more tolerant or vulnerable to droughts. Based on dissecting plant–soil feedbacks into aboveground and belowground tissue responses, we conclude that plant–soil feedback can enhance plant colonization in some arid ecosystems by promoting root growth.  相似文献   

9.
Four Glomus species/isolates from arid, semi-arid and mesic areas were evaluated for their effects on growth and water use characteristics of young Citrus volkameriana (′Volkamer′ lemon) under well-watered conditions, followed by three soil-drying episodes of increasing severity (soil moisture tensions of –0.02, –0.06, and –0.08 MPa) and recovery conditions. Arbuscular mycorrhizal (AM) plants were also compared to non-AM plants given extra phosphorus (P) fertilizer. AM plants and non-AM plants had similar shoot size (dry weight and canopy area), but all AM fungus treatments stimulated root growth (dry weight and length). Leaf P concentrations were 12–56% higher in AM plants than non-AM plants. Enhanced root growth was positively correlated with leaf P concentration. In general, AM plants had greater whole-plant transpiration than non-AM plants under well-watered conditions, under mild water stress and during recovery from moderate and severe soil drying. This suggests a faster recovery from moisture stress by AM plants. AM plants had lower leaf conductance than non-AM plants when exposed to severe soil drying. Although the greatest differences were between AM and non-AM plants, plants treated with Glomus isolates differed in colonization level, leaf P concentration, root length, transpiration flux and leaf conductance.  相似文献   

10.
Experiments were conducted to study the effect of static magnetic fields on the seeds of soybean (Glycine max (L.) Merr. var: JS-335) by exposing the seeds to different magnetic field strengths from 0 to 300 mT in steps of 50 mT for 30, 60, and 90 min. Treatment with magnetic fields improved germination-related parameters like water uptake, speed of germination, seedling length, fresh weight, dry weight and vigor indices of soybean seeds under laboratory conditions. Improvement over untreated control was 5-42% for speed of germination, 4-73% for seedling length, 9-53% for fresh weight, 5-16% for dry weight, and 3-88% and 4-27% for vigor indices I and II, respectively. Treatment of 200 mT (60 min) and 150 mT (60 min), which were more effective than others in increasing most of the seedling parameters, were further explored for their effect on plant growth, leaf photosynthetic efficiency, and leaf protein content under field conditions. Among different growth parameters, leaf area, and leaf fresh weight showed maximum enhancement (more than twofold) in 1-month-old plants. Polyphasic chlorophyll a fluorescence (OJIP) transients from magnetically treated plants gave a higher fluorescence yield at the J-I-P phase. The total soluble protein map (SDS-polyacrylamide gel) of leaves showed increased intensities of the bands corresponding to a larger subunit (53 KDa) and smaller subunit (14 KDa) of Rubisco in the treated plants. We report here the beneficial effect of pre-sowing magnetic treatment for improving germination parameters and biomass accumulation in soybean.  相似文献   

11.
Leaf-area development in King Edward potato plants infected with Verticillium albo-atrum and V. dahliae was examined both in plants with a normal growth pattern and in those where maturity had been artificially delayed. Methods are described for producing uniform, single-stemmed, initially disease-free host plants, and for measuring their total and green leaf areas throughout their development. Under both growth conditions the pathogens had no apparent effect upon the initiation of new leaves on the main axis of the plant, but they did influence their subsequent development. During the growing period the pathogens caused stunting, thus preventing the production of the potential maximum leaf area, while at maturity the chlorosis and necrosis of the diseased leaves and their premature fall reduced functional leaf area. In diseased plants in which maturity had been delayed, stunting at the apices was more apparent: internode length, leaf petiolar axis length and leaf area were all smaller than in healthy plants, the greatest reductions being shown in leaf area. Cells in the stunted leaves were fewer and smaller than those in healthy leaves. A direct result of leaf-area reduction was the development of smaller tubers, with consequent reduction in the fresh weight, and some reduction in tuber number. V. albo-atrum invariably proved to be more virulently pathogenic than V. dahliae; the use of an average Verticillium index was shown to be a reliable method for estimating relative virulence since it reflected both leaf area and yield reductions. Delaying host maturity and thus lengthening the period of extension growth conferred some resistance on plants infected with V. dahliae; symptom progression was stopped after its initial expression, and consequently leaf area was increased. This form of resistance was not shown in the plants inoculated with V. albo-atrum.  相似文献   

12.
Corn plants (Zea mays L.) were grown in the field on two soils. On a droughty soil, water was withheld from some plants during the grain-filling period while other plants were irrigated. Carbon-14 was fed to the leaves, and translocation to different plant parts was determined. Translocation appeared to be more sensitive to moisture stress than was photosynthesis. More radioactive carbon was retained in both the fed portion and the nonfed portion of the leaf of stressed plants than in nonstressed plants. The stalk segment between the treated leaf and ear-node also contained less radioactivity in stressed plants than in nonstressed plants. On a soil with higher water-holding capacity, moisture stress was imposed on plants by root pruning. Plants under severe stress continued to translocate photosynthetically assimilated 14C nearly as well as nonstressed plants for 90 minutes. Between 90 and 120 minutes after labeling, there was a major reduction in amount translocated in stressed plants compared to the nonstressed plants. At longer translocation times the rates of translocation appeared again to be more nearly equal.  相似文献   

13.
植物叶片的养分重吸收是养分贫瘠生境中植物重要的养分保存机制。研究叶片养分重吸收对土壤水分的响应,有助于了解植物对环境的适应策略。以敦煌阳关湿地优势植物芦苇为对象,研究不同水分条件[高: 33.5%±1.9%、中: 26.4%±1.3%、低: 11.3%±1.5%]下芦苇叶片氮磷重吸收模式及其对土壤水分的响应。结果表明: 1)随着土壤水分下降,土壤N浓度显著降低,芦苇成熟叶片及衰老叶片N浓度显著升高,成熟叶片和衰老叶片P浓度及土壤P浓度均无显著变化。2)高水分条件叶片N重吸收效率为 76.1%,显著高于中(65.5%)、低(62.5%)水分条件;不同水分条件叶片P重吸收效率无显著差异。3)成熟叶片和衰老叶片N浓度与叶片N重吸收效率呈极显著负相关;成熟叶片P浓度与叶片P重吸收效率无显著相关性,而衰老叶片P浓度与叶片P重吸收效率呈极显著负相关。说明土壤水分缺乏不利于叶片N重吸收。  相似文献   

14.
采用水分抗逆性指标主成分分析法,选择4年实生苗,测定和评价了连续30 d水涝和干旱胁迫的生理响应.结果表明:(1)水涝处理的叶片生长旺盛,光泽度和观赏性无明显变化,叶片相对含水量、MDA含量、SOD活性、POD活性、CAT活性的变化差异在5%以内,土壤含水量增加3.47%,细胞膜透性减少1.59%,短期水涝对美丽红山茶伤害不明显;(2)随着干旱时间延长,新叶卷缩、老叶脱落,土壤含水量、叶片相对含水量随时间呈负相关缓慢减少,细胞膜透性呈正相关缓慢增长,但复水10 d 后可恢复正常生长,无明显生理变化响应;(3)SOD活性和MDA含量分别增加了0.66%和5.31%,POD活性随干旱时间上下波动而增加6.47%, CAT活性随干旱时间延长而增加,20 d增加33.33%达最大值20.8 U??g-1??min-1.在抗性生理中,维持膜稳定性的叶片含水量、POD和CAT的变化对抗旱能力大小起主要作用.  相似文献   

15.
Vertical farming using light-emitting diode offers potential for the early production phase (few weeks) of young ornamental plants. However, once transferred to the greenhouse, the photosynthetic acclimation of these young plants might depend on this initial light regime. To obtain insight about this acclimatization, Chrysanthemum (sun species) and Spathiphyllum (shade species) were preconditioned in growth chambers for 4 weeks under four light qualities: blue (B), red (R), red/blue (RB, 60% R) and white (W) at 100 μmol m−2 s−1. Monochromatic light (R and B) limited leaf development of both species, which resulted in a lower leaf mass per area when compared to multispectral light (RB for Chrysanthemum, RB and W for Spathiphyllum). R-developed leaves had a lower photosynthetic efficiency in both species. After the light quality pretreatment, plants were transferred to the greenhouse with high-intensity natural light conditions. On the first day of transfer, R and B preconditioned leaves of both species had an inhibited photosynthesis. After 1 week in natural light condition, rapid light curve parameters of Chrysanthemum leaves that developed under B acclimated to sunlight had a similar level than RB-developed leaves unlike R-leaves. Spathiphyllum leaves showed a decrease in maximum electron transport rate and this was most pronounced for the R pretreatment. After 1 month, R-preconditioned Chrysanthemum had the lowest dry mass, while no effects on the dry weight of Spathiphyllum with respect to the pretreatments were observed. Light quality during preconditioning affected the leaf ability to acclimate to natural high light intensities in greenhouse environment.  相似文献   

16.
Under phosphorus deficiency reductions in plant leaf area have been attributed to both direct effects of P on the individual leaf expansion rate and to a reduced availability of assimilates for leaf growth. In this work we use experimental and simulation techniques to identify and quantify these processes in wheat plants growing under P-deficient conditions. In a glasshouse experiment we studied the effects of soil P addition (0–138 kg P2O5 ha-1) on tillering, leaf emergence, leaf expansion, plant growth, and leaf photosynthesis of wheat plants (cv. INTA Oasis) that were not water stressed. Plants were grown in pots containing a P-deficient (3 mg P g-1 soil) sandy soil. Sowing and pots were arranged to simulate a crop stand of 173 plants m-2. Experimental results were integrated in a simulation model to study the relative importance of each process in determining the plant leaf area during vegetative stages of wheat. Phosphorus deficiency significantly reduced plant leaf area and dry weight production. Under P-deficient conditions the phyllochron (PHY) was increased up to a 32%, compared to that of high-P plants. In low-P plants the rate of individual leaf area expansion during the quasi-linear phase of leaf expansion (LER) was significantly reduced. The effect of P deficiency on LER was the main determinant of the final size of the individual leaves. In recently expanded leaves phosphorus deficiency reduced the photosynthesis rate per unit leaf area at high radiation (AMAX), up to 57%. Relative values of AMAX showed an hyperbolic relationship with leaf P% saturating at 0.27%. Relative values of the tillering rate showed an hyperbolic relationship with the shoot P% saturating at values above 0.38%. The value of LER was not related to the concentration of P in leaves or shoots. A morphogenetic model of leaf area development and growth was developed to quantify the effect of assimilate supply at canopy level on total leaf area expansion, and to study the sensitivity of different model variables to changes in model parameters. Simulation results indicated that under mild P stress conditions up to 80% of the observed reduction in plant leaf area was due to the effects of P deficiency on leaf emergence and tillering. Under extreme P-deficient conditions the simulation model failed to explain the experimental results indicating that other factors not taken into account by the model, i.e. direct effects of P on leaf expansion, must have been active. Possible mechanisms of action of the direct effects of P on individual leaf expansion are discussed in this work.  相似文献   

17.
Although physiological effects of acute flooding have been well studied, chronic effects of suboptimal soil aeration caused by over‐irrigation of containerized plants have not, despite its likely commercial significance. By automatically scheduling irrigation according to soil moisture thresholds, effects of over‐irrigation on soil properties (oxygen concentration, temperature and moisture), leaf growth, gas exchange, phytohormone [abscisic acid (ABA) and ethylene] relations and nutrient status of tomato (Solanum lycopersicum Mill. cv. Ailsa Craig) were studied. Over‐irrigation slowly increased soil moisture and decreased soil oxygen concentration by 4%. Soil temperature was approximately 1°C lower in the over‐irrigated substrate. Over‐irrigating tomato plants for 2 weeks significantly reduced shoot height (by 25%) and fresh weight and total leaf area (by 60–70%) compared with well‐drained plants. Over‐irrigation did not alter stomatal conductance, leaf water potential or foliar ABA concentrations, suggesting that growth inhibition was not hydraulically regulated or dependent on stomatal closure or changes in ABA. However, over‐irrigation significantly increased foliar ethylene emission. Ethylene seemed to inhibit growth, as the partially ethylene‐insensitive genotype Never ripe (Nr) was much less sensitive to over‐irrigation than the wild type. Over‐irrigation induced significant foliar nitrogen deficiency and daily supplementation of small volumes of 10 mM Ca(NO3)2 to over‐irrigated soil restored foliar nitrogen concentrations, ethylene emission and shoot fresh weight of over‐irrigated plants to control levels. Thus reduced nitrogen uptake plays an important role in inhibiting growth of over‐irrigated plants, in part by stimulating foliar ethylene emission.  相似文献   

18.
Leaf growth responses to N supply and leaf position were studied using widely-spaced sunflower plants growing under field conditions. Both N supply (range 0.25 to 11.25 g added N per plant) and leaf position significantly (p=0.001) affected maximum leaf area (LAmax) of target leaves through variations in leaf expansion rate (LER); effects on duration of expansion were small. Specific leaf nitrogen (SLN, g N m-2) fell quite rapidly during the initial leaf expansion phase (LA < 35% LAmax) but leveled off during the final 65% increase of leaf area. This pattern held across leaf positions and N supply levels. Leaf nitrogen accumulation after 35% LAmax continued up to achievement of LAmax; reductions in the higher SLN characteristic of the initial phase were insufficient to cover the nitrogen requirements for expansion during the final phase. LER in the quasi-linear expansion phase (35 to 100% of LAmax) was strongly associated with SLN above a threshold that varied with leaf position (mean 1.79±0.225 g N m-2). This contrasts with the response of photosynthesis at high irradiance to SLN, which has previously been shown to have a threshold of 0.3 g N m-2; in the present work saturation of photosynthetic rate was evident when SLN reached 1.97 g N m-2. Thus, once the area of a leaf exceeds 35% of LAmax, expansion proceeds provided SLN values are close to the levels required for maximum photosynthesis. However, growth of leaves during the initial expansion phase ensures a minimum production of leaf area even at low N supply levels.  相似文献   

19.
  • Based on the elemental composition of major biochemical molecules associated with different biological functions, the ‘growth rate hypothesis’ proposed that organisms with a higher growth rate would be coupled to lower C:N, especially lower C:P and N:P ratios. However, the applicability of the growth rate hypothesis for plants is unclear, especially for shrubs growing under different water supply.
  • We performed an experiment with eight soil moisture levels (soil water content: 4%, 6%, 8%, 13%, 18%, 23%, 26% and 28%) to evaluate the effects of water availability on leaf C:N:P stoichiometry in the shrub Zygophyllum xanthoxylum.
  • We found that leaves grew slowly and favored accumulation of P over C and N under both high and low water supply. Thus, leaf C:P and N:P ratios were unimodally related to soil water content, in parallel with individual leaf area and mass. As a result, there were significant positive correlations between leaf C:P and N:P with leaf growth (u).
  • Our result that slower‐growing leaves had lower C:P and N:P ratios does not support the growth rate hypothesis, which predicted a negative association of N:P ratio with growth rate, but it is consistent with recent theoretical derivations of growth–stoichiometry relations in plants, where N:P ratio is predicted to increase with increasing growth for very low growth rates, suggesting leaf growth limitation by C and N rather than P for drought and water saturation.
  相似文献   

20.
Groups of Lolium perenne plants selected for either deep or shallow adaxial epidermal ridging were grown in a 16 h day of 70 W m-2 at 25°C, and either watered daily to 33% or allowed to dry to and then watered daily to 21% or to 16% soil moisture. During a 9 day experimental period, adaxial leaf resistances (r1) were measured with a diffusion porometer four times daily, transpiration was estimated gravimetrically, and daily rates of leaf extension were recorded. Measurements were also made of minimum abaxial resistances, stomatal frequencies and lengths, and relative leaf water content (RLWC). At 33%, 21% or 16% soil moisture, leaf extension rates of deep ridged leaves were, respectively, slower, the same, and more rapid than those with shallow ridges. At 21% or 16% soil moisture, the adaxial rl of deep-ridged was much lower than that of shallow-ridged leaves at all four sampling times. This difference was most marked on leaves below the youngest fully expanded, and was observed among older leaves even when plants were well watered. At low RLWC (< 85%), leaf resistance was greatest in leaves with shallow ridges. There was no significant difference between the leaf types in the calculated contributions of stomatal frequency or of morphology at any one pore opening, to rl but deep-ridged leaves had more stomataonthe abaxial surface. Daily rate of plant water loss was directly correlated (r=+ 0.86, P < 0.01) with mean daily maximum stomatal conductance (1/rl), and rate of leaf extension negatively with maximum rl. It is suggested that stomata operating in the concavity formed by deep ridges open wider and are less responsive to internal changes in, for example, leaf water status, than those on shallow-ridged leaves because of a more humid microenvironment at the epidermal surface. The results are discussed in relation to the concept of ‘water-savers’ and ‘water-spenders’ and its application to breeding for dry conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号