首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The results reported here indicate that selection, as practiced by maize breeders during the development of inbred lines, has markedly reduced the potential morphological variability of Corn Belt germ plasm. It is suggested that a number of traits which appear to a greater degree in “elite” lines than in those resulting from non-selective inbreeding could be the result of selection for genes or chromosomal segments derived from the introgression of maize and teosinte. Yet lines exhibiting maximum teosinte influence would not likely survive the screening imposed by visual selection. Evidence is presented which suggests that visual selection as practiced during inbreeding has little, if any, direct influence on yield in hybrid combinations. With respect to the inheritance of combining ability, results from these experiments support the assumption that high × high general combiners, on the average, tend to be higher yielding than any other set of combinations of high, medium, or low general combiners. It is, however, difficult to account for the relatively high yields of high × low general combiners on the basis of additive gene action alone. It is suggested that in material as heterogeneous as open pollinated Corn Belt varieties, as much genetic diversity can come from within varieties as from between varieties, particularly if the varieties themselves have undergone extensive introgression during the course of their evolution.
Zusammenfassung Aus den hier berichteten Ergebnissen geht hervor, da? die Selektion, die von den Maiszüchtern bei der Entwicklung von Inzuchtlinien vorgenommen wird, die potentielle morphologische Variabilit?t des Genmaterials des Corn Belts betr?chtlich vermindert hat. Es wird vermutet, da? eine Anzahl von Merkmalen, die in „Elite“-Linien in h?herem Ausma? als in unselektierten Inzuchtlinien auftreten, das Ergebnis der Selektion auf Gene oder Chromosomensegmente, die aus der Introgression von Mais und Teosinte stammen, sein k?nnten. Linien, die einen sehr starken Teosinte-Einflu? aufweisen, würden aber nur mit geringerer Wahrscheinlichkeit das Sieb der visuellen Selektion passieren. Es werden Nachweise erbracht, die nahelegen, da? eine visuelle Selektion w?hrend der Inzucht, wenn überhaupt, nur einen geringen unmittelbaren Einflu? auf den Ertrag der Hybridkombinationen hat. In bezug auf die Vererbung der Kombinationseignung stützen die Ergebnisse dieser Versuche die Annahme, da? im Durchschnitt die Kreuzung von zwei Partnern mit beiderseits hoher allgemeiner Kombinationseignung bessere Ertr?ge bringt als jede andere Kombination von Partnern hoher, mittlerer oder geringer allgemeiner Kombinationseignung. Es ist jedoch schwierig, die relativ hohen Ertr?ge von Partnern mit hoher × niedriger allgemeiner Kombinationsf?higkeit allein mit additiver Genwirkung zu erkl?ren. Es wird angenommen, da? ein so heterogenes Material wie die frei best?ubten Corn Belt-Sorten ebensoviel genetische Mannigfaltigkeit innerhalb wie zwischen den Sorten aufweisen kann, besonders wenn die Sorten im Verlaufe ihrer Entwicklung betr?chtlicher Introgression unterworfen waren.


Dedicated to Dr. George F. Sprague on the occasion of his 65th birthday.  相似文献   

2.
Summary If molecular markers are to be routinely used in maize (Zea mays L.) breeding for selection of quantitative trait loci (QTL), then consistent marker-trait associations across breeding populations are needed, as are efficient methods for weighting information from different markers. Given 15 restriction fragment length polymorphism (RFLP) markers associated with grain yield in testcrosses of 220 [BS11(FR)C7 x FRMol7] F2 individuals to FRB73, separate weighting schemes were attempted in order to maximize the frequency of favorable marker genotypes associated with increased grain yield in selected F2 individuals and F2:S4 Unes. The following principles were apparent: (1) Differential weighting among markers, in addition to weighting individual marker genotypes on the basis of associated mean effects, should be emphasized when using markers to select in breeding populations. This is due to limited population sizes that can readily be handled. (2) Relatively few markers may need to be used to screen segregating populations (e.g., F2) of limited size for loci affecting complex traits, such as combining ability for grain yield, assuming prior knowledge of marker-QTL associations. Markers given greatest weight (largest estimates of associated effects) will determine most selections. (3) When marker-based selection is among individuals at higher levels of inbreeding (e.g., S4) within selected families, more markers need to be used in screening because those associated with relatively small effects have an increased chance of affecting selection.These results suggest a qualitative approach for utilizing RFLP markers to aid in selection of complex traits in commercial hybrid maize breeding programs. Commercial research programs produce thousands of crosses each year aimed at inbred line development. Discovery of molecular markers with consistent QTL associations across breeding populations and close QTL linkages would allow for rapid screening of new F2 populations at a few key markers. Early elimination of individuals with undesirable genotypes would reduce the extent of hybrid performance testing necessary during later stages of inbreeding.  相似文献   

3.
The equilibrium inbreeding is always higher than the average inbreeding. For human populations with high inbreeding levels, the inbreeding equilibrium is more than 25% higher than the average inbreeding. Assuming no initial inbreeding in the population, the equilibrium inbreeding value is closely approached in 10 generations or less. A secondary effect of this higher inbreeding level is that the equilibrium frequency of recessive detrimental alleles is somewhat lower than expected using average inbreeding.  相似文献   

4.
BENNETT JH 《Genetica》1953,26(5-6):392-406
  相似文献   

5.
6.
The magnitude of inbreeding depression in small populations may depend on the effectiveness with which natural selection purges deleterious recessive alleles from populations during inbreeding. The effectiveness of this purging process, however, may be influenced by the rate of inbreeding and the environment in which inbreeding occurs. Although some experimental studies have examined these factors individually, no study has examined their joint effect or potential interaction. In the present study, therefore, we performed an experiment in which 180 lineages of Drosophila melanogaster were inbred at slow and fast inbreeding rates within each of three inbreeding environments (benign, high temperature, and competitive). The fitness of all lineages was then measured in a common benign environment. Although slow inbreeding reduced inbreeding depression in lineages inbred under high temperature stress, a similar reduction was not observed with respect to the benign or competitive treatments. Overall, therefore, the effect of inbreeding rate was nonsignificant. The inbreeding environment, in contrast, had a larger and more consistent effect on inbreeding depression. Under both slow and fast rates of inbreeding, inbreeding depression was significantly reduced in lineages inbred in the presence of a competitor D. melanogaster strain. A similar reduction of inbreeding depression occurred in lineages inbred under high temperature stress at a slow inbreeding rate. Overall, our findings show that inbreeding depression is reduced when inbreeding takes place in a stressful environment, possibly due to more effective purging under such conditions.  相似文献   

7.
A. Fyson  A. Oaks 《Plant and Soil》1992,147(2):317-319
Roots of maize (Zea mays cv W64A × W182E) infected by vesicular arbuscular mycorrhizal (VAM) fungi (Glomus versiforme (Karst) Berch or a Glomus species isolated from an alfalfa soil) exhibit a bright yellow pigmentation. The percentage of pigmented roots can be quantified by a rapid visual estimate or by a grid intersect method. Both methods gave similar estimates of VAM infection to those obtained using a grid intersect count on cleared roots stained with chlorazol black E. Thus for experimental or field evaluation where speed and quantity are important, the rapid visual estimate (less than one minute for each washed root system) yields reliable results. The yellow root intersect method takes longer (5–15 minutes per root system) but gives more reproducible results. The yellow root pigmentation is light sensitive However, root systems can be reliably assayed after 1 week when stored at 5°C in the dark or after 1 year if dried.  相似文献   

8.
The allele-specific polymerase chain reaction (ASPCR) has been used to determine the genotype of maize lines at two loci, wx and NPI288. The ASPCR method uses allele-specific oligonucleotide primers in PCR amplifications to amplify and discriminate simultaneously between polymorphic alleles. The success of this technique relies on the specific failure of PCR to amplify with primers that do not perfectly match the DNA sequence of one of the allelic variants. Amplification results were evaluated by dot-blot hybridization using an alkaline-phosphatase-coupled probe. The technique's speed, accuracy, sensitivity, and high throughput make it valuable for plant-breeding applications.  相似文献   

9.
P. E. Pilet  D. Ney 《Planta》1978,144(1):109-110
A method using optical microfibers permitted localized exposure of the cap or the elongating part of growing maize (Zea mays L.) roots to white light. When the cap was illuminated, a strong and very rapid inhibition of the elongation rate of the roots was found. When the light microbeam was directed at the elongating region, the roots continued to grow at the same rate as before the illumination.  相似文献   

10.
Inbreeding is typically detrimental to fitness. However, some animal populations are reported to inbreed without incurring inbreeding depression, ostensibly due to past "purging" of deleterious alleles. Challenging this is the position that purging can, at best, only adapt a population to a particular environment; novel selective regimes will always uncover additional inbreeding load. We consider this in a prominent test case: the eusocial naked mole-rat (Heterocephalus glaber), one of the most inbred of all free-living mammals. We investigated factors affecting mortality in a population of naked mole-rats struck by a spontaneous, lethal coronavirus outbreak. In a multivariate model, inbreeding coefficient strongly predicted mortality, with closely inbred mole-rats (F> or = 0.25) over 300% more likely to die than their outbred counterparts. We demonstrate that, contrary to common assertions, strong inbreeding depression is evident in this species. Our results suggest that loss of genetic diversity through inbreeding may render populations vulnerable to local extinction from emerging infectious diseases even when other inbreeding depression symptoms are absent.  相似文献   

11.
Although matings between relatives can have negative effects on offspring fitness, apparent inbreeding preference has been reported in a growing number of systems, including those with documented inbreeding depression. Here, we examined evidence for inbreeding depression and inbreeding preference in two populations (Clinton, New York, and Davis, California, USA) of the cooperatively breeding American crow (Corvus brachyrhynchos). We then compared observed inbreeding strategies with theoretical expectations for optimal, adaptive levels of inbreeding, given the inclusive fitness benefits and population‐specific magnitude of inbreeding depression. We found that low heterozygosity at a panel of 33 microsatellite markers was associated with low survival probability (fledging success) and low white blood cell counts among offspring in both populations. Despite these costs, our data were more consistent with inbreeding preference than avoidance: The observed heterozygosity among 396 sampled crow offspring was significantly lower than expected if local adults were mating by random chance. This pattern was consistent across a range of spatial scales in both populations. Adaptive levels of inbreeding, given the magnitude of inbreeding depression, were predicted to be very low in the California population, whereas complete disassortative mating was predicted in the New York population. Sexual conflict might have contributed to the apparent absence of inbreeding avoidance in crows. These data add to an increasing number of examples of an “inbreeding paradox,” where inbreeding appears to be preferred despite inbreeding depression.  相似文献   

12.
The influence of natural selection on the magnitude of inbreeding depression is an important issue in conservation biology and the study of evolution. It is generally expected that the magnitude of inbreeding depression in small populations will depend upon the average homozygosity of individuals, as measured by the coefficient of inbreeding (F). However, if deleterious recessive alleles are selectively purged from populations during inbreeding, then inbreeding depression may differ among populations in which individuals have the same inbreeding coefficient. In such cases, the magnitude of inbreeding depression will partly depend on the ancestral inbreeding coefficient (fa), which measures the cumulative proportion of loci that have historically been homozygous and therefore exposed to natural selection. We examined the inbreeding depression that occurred in lineages of Drosophila melanogaster maintained under pedigrees that led to the same inbreeding coefficient (F = 0.375) but different levels of ancestral inbreeding (fa = 0.250 or 0.531). Although inbreeding depression varied substantially among individual lineages, we observed a significant 40% decrease in the median level of inbreeding depression in the treatment with higher ancestral inbreeding. Our results demonstrate that high levels of ancestral inbreeding are associated with greater purging effects, which reduces the inbreeding depression that occurs in isolated populations of small size.  相似文献   

13.
14.
Summary This experiment was designed to study the relationship between rate of inbreeding and observed inbreeding depression of larval viability, adult fecundity and cold shock mortality in Drosophila melanogaster. Rates of inbreeding used were full-sib mating and closed lines of N=4 and N=20. Eight generations of mating in the N=20 lines, three generations in the N=4 lines and one generation of full-sib mating were synchronised to simultaneously produce individuals with an expected level of inbreeding coefficient (F) of approximately 0.25. Inbreeding depression for the three traits was significant at F=0.25. N=20 lines showed significantly less inbreeding depression than full-sib mated lines for larval viability at approximately the same level of F. A similar trend was observed for fecundity. No effect of rate of inbreeding depression was found for cold shock mortality, but this trait was measured with less precision than the other two. Natural selection acting on loci influencing larval viability and fecundity during the process of inbreeding could explain these results. Selection is expected to be more effective with slow rates of inbreeding because there are more generations and greater opportunity for selection to act before F=0.25 is reached. Selection intensities seem to have been different in the three traits measured. Selection was most intense for larval viability, less intense for fecundity and, perhaps, negligible at loci influencing cold shock mortality.  相似文献   

15.
Inbreeding depression is the reduction in fitness and vigor resulting from mating of close relatives observed in many plant and animal species. The extent to which the genetic load of mutations contributing to inbreeding depression is due to large-effect mutations versus variants with very small individual effects is unknown and may be affected by population history. We compared the effects of outcrossing and self-fertilization on 18 traits in a landrace population of maize, which underwent a population bottleneck during domestication, and a neighboring population of its wild relative teosinte. Inbreeding depression was greater in maize than teosinte for 15 of 18 traits, congruent with the greater segregating genetic load in the maize population that we predicted from sequence data. Parental breeding values were highly consistent between outcross and selfed offspring, indicating that additive effects determine most of the genetic value even in the presence of strong inbreeding depression. We developed a novel linkage scan to identify quantitative trait loci (QTL) representing large-effect rare variants carried by only a single parent, which were more important in teosinte than maize. Teosinte also carried more putative juvenile-acting lethal variants identified by segregation distortion. These results suggest a mixture of mostly polygenic, small-effect partially recessive effects in linkage disequilibrium underlying inbreeding depression, with an additional contribution from rare larger-effect variants that was more important in teosinte but depleted in maize following the domestication bottleneck. Purging associated with the maize domestication bottleneck may have selected against some large effect variants, but polygenic load is harder to purge and overall segregating mutational burden increased in maize compared to teosinte.  相似文献   

16.
Because inbreeding is common in natural populations of plants and their herbivores, herbivore‐induced selection on plants, and vice versa, may be significantly modified by inbreeding and inbreeding depression. In a feeding assay with inbred and outbred lines of both the perennial herb, Vincetoxicum hirundinaria, and its specialist herbivore, Abrostola asclepiadis, we discovered that plant inbreeding increased inbreeding depression in herbivore performance in some populations. The effect of inbreeding on plant resistance varied among plant and herbivore populations. The among‐population variation is likely to be driven by variation in plant secondary compounds across populations. In addition, inbreeding depression in plant resistance was substantial when herbivores were outbred, but diminished when herbivores were inbred. These findings demonstrate that in plant–herbivore interactions expression of inbreeding depression can depend on the level of inbreeding of the interacting species. Furthermore, our results suggest that when herbivores are inbred, herbivore‐induced selection against self‐fertilisation in plants may diminish.  相似文献   

17.
J I Yoder 《The Plant cell》1990,2(8):723-730
We have found that the maize transposable element Activator (Ac) can rapidly proliferate when transformed into tomato plants. The fate of transposed Ac elements in self-pollinated progeny of independent transgenic tomato plants was examined by DNA gel blot hybridizations. When a single copy of Ac was introduced into a transformant, the number of copies usually remained low in subsequent generations. In one lineage, however, the number of Ac elements increased from one to more than 15 copies in only two generations. DNA gel blot analyses indicated that the amplified elements were not grossly rearranged. Amplified copies of Ac resided at unique sites in the genome, and segregation analysis indicated that these sites were not tightly linked at one genetic locus. Taken together, these observations indicate that the mechanism of Ac amplification is associated with transposition.  相似文献   

18.
Dispersal by young mammals away from their natal site is generallythought to reduce inbreeding, with its attendant negative fitnessconsequences. Genetic data from the dwarf mongoose, a pack-livingcarnivore common in African savannas, indicate that there areexceptions to this generalization. In dwarf mongoose populationsin the Serengeti National Park, Tanzania, breeding pairs arecommonly related, and close inbreeding has no measurable effecton offspring production or adult survival. Inbreeding occursbecause average relatedness among potential mates within a packis high, because mating patterns within the pack are randomwith respect to the relatedness of mates, and because dispersaldoes little to decrease the relatedness among mates. Young femalesare more likely to leave a pack when the dominant male is aclose relative but are relatively infrequent dispersers. Youngmales emigrate at random with respect to the relatedness ofthe dominant female and tend to disperse to packs that containgenetically similar individuals.[Behav Ecol 7: 480–489(1996)]  相似文献   

19.
The ability to self in the absence of pollinators, i.e. reproductive assurance, and the detrimental consequences of inbreeding, i.e. inbreeding depression, are central factors influencing plant mating system evolution. The purpose of this study was to quantify whether self-fertility and inbreeding depression are related to levels of inbreeding in four Cyclamen species, namely C. balearicum (mean Fis = 0.930), C. creticum (mean Fis = 0.748), C. repandum (mean Fis = 0.658) and C. hederifolium (mean Fis = 0.329). C. balearicum showed a markedly greater capacity to autonomously self-fertilize than the three other species, which may have favoured inbreeding in this species. Levels of inbreeding depression were highest in C. creticum and C. hederifolium at the fruit maturation (δ = 0.18 and 0.20, respectively) and seed number (δ = 0.32 and 0.30, respectively) stages, and for C. repandum at the seed weight stage (δ = 0.23). Although C. balearicum showed inbreeding depression on seed germination (δ = 0.45), this may be an artefact of the generally low levels of seed germination in the experiment. Overall, we observed only limited evidence for the predicted negative relation between inbreeding coefficients and levels of inbreeding since C. creticum had high levels of inbreeding and inbreeding depression. Other factors may thus influence the relationship between inbreeding and inbreeding depression in these species.  相似文献   

20.
Dahlberg's ('43) hypothesis that heterosis is a major component of the secular trend towards increased stature is supported by the significant negative correlation between stature and the coefficient of inbreeding in 70 departments of France. This phenomenon is especially evident after the onset of puberty, (r at age 7 = ?0.25 for boys: ?0.24 for girls; but r at age 14 = ?0.44 for boys and ?0.56 for girls) and is found also in adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号