首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress can trigger neuronal cell death and has been implicated in several chronic neurological diseases and in acute neurological injury. Oxidative toxicity can be induced by glutamate treatment in cells that lack ionotrophic glutamate receptors, such as the immortalized HT22 hippocampal cell line and immature primary cortical neurons. Previously, we found that neuroprotective effects of geldanamycin, a benzoquinone ansamycin, in HT22 cells were associated with a down-regulation of c-Raf-1, an upstream activator of the extracellular signal-regulated protein kinases (ERKs). ERK activation, although often attributed strictly to neuronal cell survival and proliferation, can also be associated with neuronal cell death that occurs in response to specific insults. In this report we show that delayed and persistent activation of ERKs is associated with glutamate-induced oxidative toxicity in HT22 cells and immature primary cortical neuron cultures. Furthermore, we find that U0126, a specific inhibitor of the ERK-activating kinase, MEK-1/2, protects both HT22 cells and immature primary cortical neuron cultures from glutamate toxicity. Glutamate-induced ERK activation requires the production of specific arachidonic acid metabolites and appears to be downstream of a burst of reactive oxygen species (ROS) accumulation characteristic of oxidative stress in HT22 cells. However, inhibition of ERK activation reduces glutamate-induced intracellular Ca(2+) accumulation. We hypothesize that the precise kinetics and duration of ERK activation may determine whether downstream targets are mobilized to enhance neuronal cell survival or ensure cellular demise.  相似文献   

2.
Dong Y  Tang TS  Lu CL  He C  Dong JB  Huang XY  Sun FZ  Bao X 《生理学报》2000,52(5):402-406
对原代培养7~9d的海马神经元给予谷氨酸处理,24h后,神经元的存活率降低。预先给予垂体腺苷酸环化酶激活肽(PACAP)能显著减少谷氨酸引起的海马神经元死亡。谷氨酸呈剂量依赖性增加海马神经元细胞内钙离子含量,PACAP能抑制谷氨酸引起的海马神经元细胞内钙离子浓度的升高,特异性PACAP Ⅰ型受体拮抗剂PACAP 6-38能完全阻断PACAP减轻谷氨酸所致海马神经元损伤及降低谷氨酸所致神经元细胞内钙  相似文献   

3.
The hypothesis that Na+-dependent calcium extrusion is important in protecting against neuronal excitotoxicity was tested. In cocultures of embryonic rat hippocampal neurons and mouse neuroblastoma hybrid (NCB-20) cells, calcium ionophore A23187 (1 microM) or high levels of extracellular K+ killed hippocampal neurons selectively, leaving NCB-20 cells unscathed. Hippocampal neurons showed large, sustained rises in intracellular calcium in response to A23187 or K+, whereas NCB-20 cells showed only transient calcium responses. The ability of NCB-20 cells to reduce the calcium load and to survive exposure to A23187 or K+ were dependent on extracellular Na+, suggesting that an active Na+/Ca2+ exchange mechanism was important in protecting against cell death. Finally, removal of extracellular Na+ reduced the threshold for glutamate neurotoxicity in hippocampal neurons, demonstrating the importance of Na+/Ca2+ exchange in protecting against excitotoxicity. Taken together, these findings suggest that differences in cell calcium-regulating systems may determine whether a neuron lives or degenerates in the face of an excitatory challenge.  相似文献   

4.
Carnosine is a known protector of neuronal cells against oxidative injury which prevents both apoptotic and necrotic cellular death. It was shown earlier that carnosine serves as an intracellular buffer of free radicals. Using the model of ligand-dependent oxidative stress in neurons, we have shown that homocysteine (HC) initiates long-term activation of extracellular signal regulated kinase, isoforms 1 and 2 (ERK 1/2) and Jun N-terminal kinase (JNK) which corresponds to exitotoxic effect resulting in cellular death. L-carnosine (β-alanyl-L-histidine) protects neurons from both excitotoxic effect of homocysteine and cellular death. Its analogs, β-alanyl-D-histidine (D-carnosine) and L-histidyl-β-alanine, restricted accumulation of free radicals and delayed activation of ERK1/2 and JNK in neuronal cells, but did not promote neuronal viability.  相似文献   

5.
6.
Sustained increases in intracellular calcium following prolonged seizures or other neurological insults have been thought to be responsible for neuronal cell death for well over two decades. For example, a seizure or a stroke can lead to excessive release of glutamate, an endogenous excitotoxin. Overactivation of receptors that interact with glutamate will raise calcium levels to stimulate a variety of signaling pathways that can impair neuronal respiration and eventually kill neurons. On the contrary, recent evidence shows that under numerous conditions calcium can prevent neurons from dying. Experimental epilepsy and ischemia models show that protection of neurons appears to depend upon the age of the animal, the amount and route of calcium elevation, timing of initial insults, and brain regions involved. This review will discuss novel findings on the protective signaling role of calcium under a wide range of pathological conditions.  相似文献   

7.
Abstract: Because neurons are postmitotic, they are irreplaceable once they succumb to necrotic insults such as hypoglycemia, ischemia, and seizure. A paucity of energy can exacerbate the toxicities of these insults; thus, a plausible route to protect neurons from necrotic injury would be to enhance their glucose uptake capability. We have demonstrated previously that defective herpes simplex virus (HSV) vectors overexpressing the rat brain glucose transporter (GT) gene ( gt ) can enhance glucose uptake in adult rat hippocampus and in hippocampal cultures. Furthermore, we have observed that such vectors can maintain neuronal metabolism during hypoglycemia and reduce kainic acid-induced seizure damage. In this study, we have developed bicistronic vectors that coexpressed gt and Escherichia coli lacZ as a reporter gene, which allows us to identify directly neurons that are infected with the vectors. Overexpression of GT from these vectors protected cultured hippocampal, spinal cord, and septal neurons against various necrotic insults, including hypoglycemia, glutamate, and 3-nitropropionic acid. Our observations demonstrate the feasibility of using HSV vectors to protect neurons from necrotic insults. Although this study has concentrated on the delivery of gt , other genes with therapeutic or protective capability might also be used.  相似文献   

8.
In order to understand the physical tolerance of neurons to traumatic insults, engineers and neuroscientists have attempted to reproduce the biomechanical environment during a traumatic event using in vitro injury systems with isolated components of the nervous system. This approach allows one to begin to unravel the underlying molecular and biochemical mechanisms that lead to cell dysfunction and death as a function of mechanical inputs. Excess mechanical force and deformation causes structural and functional breakdown, including several key deleterious cellular processes, such as membrane damage, an upset of calcium homeostasis, glutamate release, cell death, and caspase-mediated proteolysis. Understanding of the mechanotransduction events, however, that lead to cellular failure and dysfunction, are not well understood. Mechanically characterized cellular models of traumatic loading are critical to the improved understanding of mechanotransduction in the context of neural injury, the improvement of protective systems, and to provide a controlled setting for testing therapeutic interventions. In this review of the cellular mechanics of traumatic neural loading, we focus on the backdrop and motivation for studying mechanical thresholds in neurons and glial cells and discuss some of the acute responses that may help elucidate improved tolerance criteria and illuminate future research directions.  相似文献   

9.
Lurcher is a spontaneous mouse mutant characterized by premature and aberrant apoptosis in the cerebellum. The phenotype has been shown to be caused by a point mutation in the delta2 glutamate receptor subunit gene that results in a large constitutive inward current, which has proved that endogenous excitotoxicity can lead to apoptotic cell death. Additional studies have suggested a direct link between this endogenous excitotoxicity and the activation of intracellular cell death enzymes. We have previously shown that excitotoxic neuronal degeneration elicited through exogenous insults (e.g. excitotoxins, stroke) is promoted by an extracellular cascade involving the serine protease tissue plasminogen activator (tPA). However, whether it is through necrotic or apoptotic mechanisms that this excitotoxic cell death occurs has remained contested. We describe the attenuation of the Lurcher cell death progression in tPA-deficient mice. Elimination of tPA delayed the apoptotic death of Purkinje and granule neurons in Lurcher mice, and reduced the phosphorylation of Jun and the activation of caspase 8. These results indicate that not only does tPA-promoted excitotoxic cell death proceed through a receptor-mediated apoptotic pathway, but that neuronal cell death in the Lurcher mouse is facilitated by extracellular cascades in addition to the already described intracellular pathways. Finally, these findings suggest that therapeutic benefits may be achieved for a wide variety of insults to the CNS by regulating tPA activity to preserve neuronal viability.  相似文献   

10.
3-Nitropropionic acid (3NP), an irreversible inhibitor of succinate dehydrogenase, induces both rapid necrotic and slow apoptotic death in rat hippocampal neurons. Low levels of extracellular glutamate (10 microM) shift the 3NP-induced cell death mechanism to necrosis, while NMDA receptor blockade results in predominantly apoptotic death. In this study, we examined the 3NP-induced alterations in free cytosolic and mitochondrial calcium levels, ATP levels, mitochondrial membrane potential, and calpain and caspase activity, under conditions resulting in the activation of apoptotic and necrotic pathways. In the presence of 10 microM glutamate, 3NP administration resulted in a massive elevation in [Ca(2+)](c) and [Ca(2+)](m), decreased ATP, rapid mitochondrial membrane depolarization, and a rapid activation of calpain but not caspase activity. In the presence of the NMDA receptor antagonist MK-801, 3NP did not induce a significant elevation of [Ca(2+)](c) within the 24h time period examined, nor increase [Ca(2+)](m) within 1h. ATP was maintained at control levels during the first hour of treatment, but declined 64% by 16h. Calpain and caspase activity were first evident at 24h following 3NP administration. 3NP treatment alone resulted in a more rapid decline in ATP, more rapid calpain activation (within 8h), and elevated [Ca(2+)](m) as compared to the results obtained with added MK-801. Together, the results demonstrate that 3NP-induced necrotic neuron death is associated with a massive calcium influx through NMDA receptors, resulting in mitochondrial depolarization and calpain activation; while 3NP-induced apoptotic neuron death is not associated with significant elevations in [Ca(2+)](c), nor with early changes in [Ca(2+)](m), mitochondrial membrane potential, ATP levels, or calpain activity.  相似文献   

11.
Overexpression of bcl-2protects neurons from numerous necrotic insults, both in vitro and in vivo. While the bulk of such protection is thought to arise from Bcl-2 blocking cytochrome c release from mitochondria, thereby blocking apoptosis, the protein can target other steps in apoptosis, and can protect against necrotic cell death as well. There is evidence that these additional actions may be antioxidant in nature, in that Bcl-2 has been reported to protect against generators of reactive oxygen species (ROS), to increase antioxidant defenses and to decrease levels of ROS and of oxidative damage. Despite this, there are also reports arguing against either the occurrence, or the importance of these antioxidant actions. We have examined these issues in neuron-enriched primary hippocampal cultures, with overexpression of bcl-2 driven by a herpes simplex virus amplicon: (i) Bcl-2 protected strongly against glutamate, whose toxicity is at least partially ROS-dependent. Such protection involved reduction in mitochondrially derived superoxide. Despite that, Bcl-2 had no effect on levels of lipid peroxidation, which is thought to be the primary locus of glutamate-induced oxidative damage; (ii) Bcl-2 was also mildly protective against the pro-oxidant adriamycin. However, it did so without reducing levels of superoxide, hydrogen peroxide or lipid peroxidation; (iii) Bcl-2 protected against permanent anoxia, an insult likely to involve little to no ROS generation. These findings suggest that Bcl-2 can have antioxidant actions that may nonetheless not be central to its protective effects, can protect against an ROS generator without targeting steps specific to oxidative biochemistry, and can protect in the absence of ROS generation. Thus, the antioxidant actions of Bcl-2 are neither necessary nor sufficient to explain its protective actions against these insults in hippocampal neurons.  相似文献   

12.
There is now considerable knowledge concerning neuron death following necrotic insults, and it is believed that the generation of reactive oxygen species (ROS) and oxidative damage play a pivotal role in the neuron death. Prompted by this, we have generated herpes simplex virus-1 amplicon vectors over-expressing the genes for the antioxidant enzymes catalase (CAT) or glutathione peroxidase (GPX), both of which catalyze the degradation of hydrogen peroxide. Over-expression of each of these genes in primary hippocampal or cortical cultures resulted in increased enzymatic activity of the cognate protein. Moreover, each enzyme potently decreased the neurotoxicity induced by kainic acid, glutamate, sodium cyanide and oxygen/glucose deprivation. Finally, these protective effects were accompanied by parallel decreases in hydrogen peroxide accumulation and the extent of lipid peroxidation. These studies not only underline the key role played by ROS in the neurotoxicity of necrotic insults, but also suggest potential gene therapy approaches.  相似文献   

13.
Excitotoxic cell death.   总被引:81,自引:0,他引:81  
Excitotoxicity refers to the ability of glutamate or related excitatory amino acids to mediate the death of central neurons under certain conditions, for example, after intense exposure. Such excitotoxic neuronal death may contribute to the pathogenesis of brain or spinal cord injury associated with several human disease states. Excitotoxicity has substantial cellular specificity and, in most cases, is mediated by glutamate receptors. On average, NMDA receptors activation may be able to trigger lethal injury more rapidly than AMPA or kainate receptor activation, perhaps reflecting a greater ability to induce calcium influx and subsequent cellular calcium overload. It is possible that excitotoxic death may share some mechanisms with other forms of neuronal death.  相似文献   

14.
Aberrant glutamate and calcium signalings are neurotoxic to specific neuronal populations. Calcium/calmodulin-dependent kinase II (CaMKII), a multifunctional serine/threonine protein kinase in neurons, is believed to regulate neurotransmission and synaptic plasticity in response to calcium signaling produced by neuronal activity. Importantly, several CaMKII substrates control neuronal structure, excitability, and plasticity. Here, we demonstrate that CaMKII inhibition for >4 h using small molecule and peptide inhibitors induces apoptosis in cultured cortical neurons. The neuronal death produced by prolonged CaMKII inhibition is associated with an increase in TUNEL staining and caspase-3 cleavage and is blocked with the translation inhibitor cycloheximide. Thus, this neurotoxicity is consistent with apoptotic mechanisms, a conclusion that is further supported by dysregulated calcium signaling with CaMKII inhibition. CaMKII inhibitory peptides also enhance the number of action potentials generated by a ramp depolarization, suggesting increased neuronal excitability with a loss of CaMKII activity. Extracellular glutamate concentrations are augmented with prolonged inhibition of CaMKII. Enzymatic buffering of extracellular glutamate and antagonism of the NMDA subtype of glutamate receptors prevent the calcium dysregulation and neurotoxicity associated with prolonged CaMKII inhibition. However, in the absence of CaMKII inhibition, elevated glutamate levels do not induce neurotoxicity, suggesting that a combination of CaMKII inhibition and elevated extracellular glutamate levels results in neuronal death. In sum, the loss of CaMKII observed with multiple pathological states in the central nervous system, including epilepsy, brain trauma, and ischemia, likely exacerbates programmed cell death by sensitizing vulnerable neuronal populations to excitotoxic glutamate signaling and inducing an excitotoxic insult itself.  相似文献   

15.
Oxidative glutamate toxicity in the neuronal cell line HT22 is a model for cell death by oxidative stress, where an excess of extracellular glutamate inhibits import of cystine, a building block of the antioxidant glutathione. The subsequent decrease in glutathione then leads to the accumulation of reactive oxygen species (ROS) and programmed cell death. We used pharmacological compounds known to interact with heterotrimeric G-protein signalling and studied their effects on cell survival, morphology, and intracellular events that ultimately lead to cell death. Cholera toxin and phorbol esters were most effective and prevented cell death through independent pathways. Treating HT22 cells with cholera toxin attenuated the glutamate-induced accumulation of ROS and calcium influx. This was, at least in part, caused by an increase in glutathione due to improved uptake of cystine mediated by the induction of the glutamate/cystine-antiporter subunit xCT or, additionally, by the up-regulation of the antiapoptotic protein Bcl-2. Gs activation also protected HT22 cells from hydrogen peroxide or inhibition of glutathione synthesis by buthionine sulfoximine, and immature cortical neurones from oxidative glutamate toxicity. Thus, this pathway might be more generally implicated in protection from neuronal death by oxidative stress.  相似文献   

16.
Programmed neuronal cell death is required during development to achieve the accurate wiring of the nervous system. However, genetic or accidental factors can lead to the premature, non-programmed death of neurons during adult life. Inappropriate death of cells in the nervous system is the cause of multiple neurodegenerative disorders. Pathological neuronal death can occur by apoptosis, by necrosis or by a combination of both. Necrotic cell death underlies the pathology of devastating neurological diseases such as neurodegenerative disorders, stroke or trauma. However, little is known about the molecular mechanisms that bring about necrotic cell death. Proteases play crucial roles in neuron degeneration by exerting both regulatory and catabolic functions. Elevated intracellular calcium is the most ubiquitous feature of neuronal death with the concomitant activation of cysteine calcium-dependent proteases, calpains. Calpains and lysosomal, catabolic aspartyl proteases, play key roles in the necrotic death of neurons. In this review, we survey the recent literature on the role of cysteine and aspartyl proteases in necrosis and neurodegeneration, aiming to delineate common proteolytic mechanisms mediating cellular destruction.  相似文献   

17.
Susceptibility to neuron cell death associated to neurodegeneration and ischemia are exceedingly increased in the aged brain but mechanisms responsible are badly known. Excitotoxicity, a process believed to contribute to neuron damage induced by both insults, is mediated by activation of glutamate receptors that promotes Ca2+ influx and mitochondrial Ca2+ overload. A substantial change in intracellular Ca2+ homeostasis or remodeling of intracellular Ca2+ homeostasis may favor neuron damage in old neurons. For investigating Ca2+ remodeling in aging we have used live cell imaging in long-term cultures of rat hippocampal neurons that resemble in some aspects aged neurons in vivo. For this end, hippocampal cells are, in first place, freshly dispersed from new born rat hippocampi and plated on poli-D-lysine coated, glass coverslips. Then cultures are kept in controlled media for several days or several weeks for investigating young and old neurons, respectively. Second, cultured neurons are loaded with fura2 and subjected to measurements of cytosolic Ca2+ concentration using digital fluorescence ratio imaging. Third, cultured neurons are transfected with plasmids expressing a tandem of low-affinity aequorin and GFP targeted to mitochondria. After 24 hr, aequorin inside cells is reconstituted with coelenterazine and neurons are subjected to bioluminescence imaging for monitoring of mitochondrial Ca2+ concentration. This three-step procedure allows the monitoring of cytosolic and mitochondrial Ca2+ responses to relevant stimuli as for example the glutamate receptor agonist NMDA and compare whether these and other responses are influenced by aging. This procedure may yield new insights as to how aging influence cytosolic and mitochondrial Ca2+ responses to selected stimuli as well as the testing of selected drugs aimed at preventing neuron cell death in age-related diseases.  相似文献   

18.
Had-Aissouni L 《Amino acids》2012,42(1):181-197
The primary function assigned to the sodium-dependent glutamate transporters, also known as excitatory amino acid transporters (EAATs), is to maintain the extracellular glutamate concentration in the low micromolar range, allowing glutamate to be used as a signaling molecule in the brain and preventing its cytotoxic effects. However, glutamate and cyst(e)ine, that is also a substrate of EAATs, are also important metabolites used for instance in the synthesis of the main antioxidant glutathione. This review describes the evidence suggesting that EAATs, by providing glutathione precursors, are crucial to prevent oxidative death in particular cells of the nervous system while being dispensable in others. This differential importance may depend on the way antioxidant defenses are maintained in each cell type and on the metabolic fate of transported substrates, both being probably controlled by EAAT interacting proteins. As oxidative stress invariably contributes to various forms of cell death, a better understanding of how antioxidant defenses are maintained in particular brain cells will probably help to develop protective strategies in degenerative insults specifically affecting these cells.  相似文献   

19.
Excitotoxicity refers to the ability of glutamate or related excitatory amino acids to mediate the death of central neurons under certain conditions, for example, after intense exposure. Such excitotoxic neuronal death may contribute to the pathogenesis of brain or spinal cord injury associated with several human disease states. Excitotoxicity has substantial cellular specificity and, in most cases, is mediated by glutamate receptors. On average, NMDA receptors activation may be able to trigger lethal injury more rapidly than AMPA or kainate receptor activation, perhaps reflecting a greater ability to induce calcium influx and subsequent cellular calcium overload. It is possible that excitotoxic death may share some mechanisms with other forms of neuronal death. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
ATP-sensitive K+ (KATP) channels that are gated by intracellular ATP/ADP concentrations are a unique subtype of potassium channels and play an essential role in coupling intracellular metabolic events to electrical activity. Opening of KATP channels during energy deficits in the CNS induces efflux of potassium ions and in turn hyperpolarizes neurons. Thus, activation of KATP channels is thought to be able to counteract excitatory insults and protect against neuronal death. In this review, we bring together recent studies about what kinds of molecules are needed to build and regulate arrays of KATP channel functions in the CNS neurons. We propose a model to explain how KATP channel activation regulates glutamate release from the pre-synaptic terminals and how this regulation protects against ischemic neuronal injury and epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号