首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Congenital adrenal hyperplasia (CAH) is a common recessive genetic disease caused mainly by steroid 21-hydroxylase (P450c21) deficiency. Many forms of CAH exist resulting from various mutations of the CYP21B gene. We sequenced CYP21B cDNA from a normal person and its genes from a patient with simple virilizing CAH. When comparing several CYP21B sequences, we found it was polymorphic. In the patient, a single base substitution replaced Ile172 (ATC) with Asn (AAC) in one allele while Arg356 (CGG) was converted to Trp (TGG) in the other. A normal P450c21 cDNA clone was transfected into COS-1 cells to produce 21-hydroxylase activity toward its substrates, progesterone and 17-hydroxyprogesterone. Mutants corresponding to Asn172 or Trp356 mutation were constructed by site-directed mutagenesis of the normal c21 cDNA clone. They failed to produce active enzyme toward either substrate upon transfection into COS-1 cells, demonstrating that these mutations caused CAH. Aligning sequences with other P450s, Ile172 could be located in the membrane anchoring domain and Arg356 in the substrate-binding site of P450c21. Both mutations are present in the CYP21A1P pseudogene, suggesting that they may be transferred from CYP21A1P by gene conversion events.  相似文献   

2.
Oligonucleotide probes specific for the deleterious mutations harbored in the P-450(C21)A pseudogene and oligonucleotide probes specific for the corresponding sequences in the B gene were prepared to examine the molecular lesions in the P-450(C21) gene of P-450(C21)-deficient patients. Using these gene-specific probes, we performed Southern blot analyses of genomic DNAs from 11 patients and eight normal individuals. At least one allele of the B gene (the 3.7-kb TaqI fragment) in a patient was inactivated by mutations caused by recombination with the A gene. The A genes in normal individuals and patients seemed to be replaced frequently (i.e., 10/19 individuals) in their 3' portions by B gene sequences. All of these alterations occurred without changing the characteristic length (3.2 kb) of the TaqI fragment of the A gene, a result strongly suggesting that frequent gene conversions and/or intragenic recombinations have happened in the P-450(C21) genes. Densitometric analysis of the autoradiograms from hybridization experiments revealed extensive variation (from one to five copies) in the copy number of the A gene (the 3.2-kb TaqI fragment) whereas that of the B gene (the 3.7-kb TaqI fragment) was relatively constant at two or three copies.  相似文献   

3.
Lesions in the gene encoding the adrenal enzyme steroid 21-hydroxylase (P450c21) result in defective adrenal cortisol synthesis, often accompanied by aldosterone deficiency. The symptoms range from severe neonatal disease to inconspicuous symptoms in adulthood depending on the nature of the mutations. The 21-hydroxylase gene is present in close proximity to a highly homologous pseudogene, and both genes show variation in copy number between individuals. For complete DNA sequence characterization, we have applied selective polymerase chain reaction amplification and direct sequencing of all full-length steroid 21-hydroxylase genes present in individuals. Using healthy individuals with only one remaining steroid 21-hydroxylase allele as normal references, a new allele was found in two siblings, in whom clinical and laboratory findings demonstrated moderate enzyme deficiency. Full-length sequencing of this allele displayed an Arg 484 to Pro codon change in exon 10, in the same position as a previously identified GG to C mutation found in a patient with severe 21 -hydroxylase deficiency. Arg 484 is located within a stretch of amino acids that are highly conserved between mammalian 21-hydroxylases. The finding of the presently reported 21-hydroxylase allele indicates that the GG to C mutation from the severely affected patient has arisen by a two-step mechanism, consisting of a G to C transversion accompanied by an adjacent G deletion. When sequencing 26 pseudogenes, both these mutations, which are not present in the pseudogenes hitherto reported, were found at low frequency together with a number of other polymorphisms. Thus, also rare mutations can spread via the pseudogene and can therefore be expected to arise independently in unrelated individuals.  相似文献   

4.
We have developed an assay based on solid-phase minisequencing to screen for the following seven point mutations in the gene CYP21 encoding 21-hydroxylase: Pro30Leu, I2-splice, Ile172Asn, Cluster-E6, Val281Leu, Gln318Stop, and Arg356Trp. 5′-Biotinylated PCR products of CYP21 are bound to streptavidin-coated microtiter wells, where the minisequencing reaction takes place after denaturation of DNA. Depending on the sequence investigated, one specific 3H-labelled deoxyribonucleotide is incorporated to extend a detection primer. By using an appropriate set of detection primers, it is possible to screen the gene for several mutations within the same PCR amplificate. This fast and reliable method very clearly distinguishes between DNA from homozygous mutant, heterozygous, and normal individuals and is well suited for routine diagnosis of patients with 21-hydroxylase deficiency and for carrier detection. Received: 19 August 1996  相似文献   

5.
Abstract

Congenital adrenal hyperplasia is an inherited autosomal recessive disorder related to deficient cortisol synthesis. The deficiency of steroid 21-hydroxylase (cytochrome P450 21A2), an enzyme involved in cortisol synthesis, is responsible for ~95% of cases of congenital adrenal hyperplasia. This metabolic disease exhibits three clinical forms: salt-wasting, simple virilizing, and non-classical form, which are divided according to the degree of severity. In the present study, structural and mutational analyses were performed in order to identify the structural impact of mutations on cytochrome P450 21A2 and correlate them with patient clinical severity. The following mutations were selected: arginine-356 to tryptophan (R356W), proline-30 to leucine (P30L), isoleucine-172 to asparagine (I172N), valine-281 to leucine (V281L), and the null mutation glutamine-318 (Q318X). Our computational approach mapped the location of residues on P450 and identified their implications on enzyme electrostatic potential mapping to progesterone and heme binding pockets. Using molecular dynamics simulations, we analyzed the structural stability of ligand binding and protein structure, as well as possible conformational changes at the catalytic pocket that leads to impairment of enzymatic activity. Our study sheds light on the impact structural mutations have over steroid 21-hydroxylase structure-function in the cell.

Communicated by Ramaswamy H. Sarma  相似文献   

6.
The effect of spin state on cytochrome P-450 reduction was studied with a reconstituted system consisting of P-450C21 and NADPH-cytochrome P-450 reductase (NADPH:ferricytochrome oxidoreductase, EC 1.6.2.4) purified from bovine adrenocortical microsomes. The absolute high spin contents of substrate-free, progesterone-bound and 17 alpha-hydroxyprogesterone-bound P-450C21 were estimated from the analysis of thermally induced difference spectra to be 25, 78 and 94% at 25 degrees C, respectively, in 50 mM potassium phosphate buffer (pH 7.2) containing 20% glycerol, 0.1 mM EDTA and 0.5% Emulgen 913. The effect of the high spin content on P-450C21 reduction by NADPH in the reconstituted system was analyzed by a steady-state method and by a stopped-flow method at 25 degrees C. The steady-state results showed that the rate of P-450C21 reduction was not affected by the high spin content of substrate-bound P-450C21 but was very slow without a steroid substrate. Biphasic reduction of P450C21 containing two first-order processes was observed in the stopped-flow experiment in the presence of either of the steroid substrates, but the reduction was very slow without the substrate. There were no significant differences in the rate and the amount of the fast phase of reduction between 17 alpha-hydroxyprogesterone-bound and progesterone-bound P-450C21. Both kinetic studies indicate that the spin state does not control the electron transfer from NADPH to P-450C21 via NADPH-cytochrome P-450 reductase but the presence of substrate is essential for the reduction of P-450C21.  相似文献   

7.
Cytochrome P-450 (P-450C21), purified from bovine adrenocortical microsomes, was incorporated into the single bilayer liposomes of egg yolk phosphatidylcholine by gel filtration, using a high pressure liquid chromatography system. Interaction of the steroid substrates, 17 alpha-hydroxyprogesterone and progesterone, with P-450C21 in the liposomes was studied in the equilibrium state by measuring substrate-induced spectral change. The apparent dissociation constant of the P-450C21-substrate complex increased with phosphatidylcholine concentration in the system, showing the substrate to be partitioned between the aqueous and lipid phases. Partition coefficients, determined by equilibrium dialysis and the Hummel-Dreyer method, were 3500 for progesterone and 2000 for 17 alpha-hydroxyprogesterone at 25 degrees C. The binding process of the substrates to P-450C21 in the liposomes and their dissociation were measured by a stopped flow method. The apparent rate of substrate binding to P-450C21 in the liposomes was not effected by substrate partitioning, indicating partitioning to occur much more quickly than substrate binding to P-450C21. Absorption changes observed in the stopped flow experiments were analyzed at a rapid equilibrium of partitioning. Based on these results, the substrate binding site of P-450C21 was concluded to face the lipid phase of the liposome membranes.  相似文献   

8.
9.
Mutations Arg(117) --> His and Asn(21) --> Ile in human trypsinogen-I have been recently associated with hereditary pancreatitis (HP). The Arg(117) --> His substitution is believed to cause pancreatitis by stabilizing trypsin against autolytic degradation, while the mechanism of action of Asn(21) --> Ile has been unknown. In an effort to understand the effect(s) of this mutation, Thr(21) in the highly homologous rat trypsinogen-II was replaced with Asn or Ile, and the recombinant zymogens and their active trypsin forms were studied. Kinetic parameters of all three trypsins were comparable, and the active enzymes suffered autolysis at similar rates, indicating that neither catalytic properties nor proteolytic stability of trypsin are influenced by mutations at position 21. When incubated at pH 8.0, 37 degrees C, pure zymogens underwent autoactivation with concomitant trypsinolytic degradation in a Ca(2+)-dependent fashion. Thus, in the presence of 5 mM Ca(2+), autoactivation and digestion of the zymogens after Arg(117) and Lys(188) were observed, while in the presence of 1 mM EDTA autoactivation and cleavage at Lys(188) were reduced, and zymogenolysis at the Arg(117) site was enhanced. Overall rates of zymogen degradation in [Asn(21)]- and [Ile(21)]trypsinogens were higher in Ca(2+) than in EDTA, while [Thr(21)]trypsinogen demonstrated inverse characteristics. Remarkably, both in the presence and absence of Ca(2+), [Ile(21)]trypsinogen exhibited significantly higher stability against autoactivation and proteolysis than zymogens with Asn(21) or Thr(21). The observations suggest that autocatalytic trypsinogen degradation may be an important defense mechanism against excessive trypsin generation in the pancreas, and trypsinogen stabilization by the Asn(21) --> Ile mutation plays a role in the pathogenesis of HP.  相似文献   

10.
Steroid 21-hydroxylase (P450c21) is absent or defective in more than 90% of patients with congenital adrenal hyperplasia. This disorder of cortisol biosynthesis occurs in a wide spectrum of clinical severity; specific mutations in the 21-hydroxylase gene (CYP21) have been found in association with particular clinical phenotypes. To determine the functional effects of mutations causing amino acid substitutions, normal P450c21 and three mutagenized P450c21 enzymes were expressed at high levels in cultured COS-1 cells using recombinant vaccinia virus. A single amino acid substitution (Val281----Leu) present in patients with mild "nonclassical" 21-hydroxylase deficiency resulted in an enzyme with 20-50% of normal activity. A mutation (Ile172----Asn) identified in patients with the "simple virilizing" form (poor cortisol synthesis but adequate aldosterone synthesis) resulted in an enzyme with less than 2% of normal activity. Finally, a cluster mutation (Ile-Val-Glu-Met234-238----Asn-Glu-Glu-Lys) found in a patient with severe "salt wasting" 21-hydroxylase deficiency (inadequate aldosterone synthesis) results in an enzyme with no detectable activity. These data indicate that the severity of 21-hydroxylase deficiency correlates with the degree of enzymatic compromise.  相似文献   

11.
By site-directed mutagenesis, we made several cytochrome P-450d (P-450d) mutants as follows: Asn310Phe (D13), Ile312Leu (D14), Glu318Asp (D15), Val320Ile (D16), Phe325Thr (D19), Asn310Phe,Ile312Leu (M6), Glu318Asp,Val320Ile (M7), Phe325Thr, Glu318Asp (M3). This region (Asn-310-Phe-325) is supposed to be located in the distal helix above the heme plane in P-450d, being conjectured from the structure of P-450cam. We studied Soret spectral changes of those mutants by adding several axial ligands such as aniline, pyridine, metyrapone, 2-phenylimidazole and 4-phenylimidazole. Binding constants (Kb) of aniline and pyridine to the single and double mutants were higher than those to the wild type by 2-10-times. The double mutations did not additively increase the Kb values compared with those to the single mutants. In contrast, Kb value (1.0.10(5) M-1) of metyrapone to the double mutant M3 was much higher than that (2.0.10(3) M-1) of the wild type and those of the single mutants, D15 (4.5.10(4) M-1) and D19 (1.6.10(4) M-1). The increased affinity of metyrapone to the mutant M3 may be attributed to an interaction of the hydrophobic group of metyrapone with nearby hydrophobic group(s) produced cooperatively by the double mutation of P-450d. Kb values of 2-phenylimidazole and 4-phenylimidazole to the mutant M3 were also the highest among those of the mutants and the wild type. Therefore, it was suggested that this region (from Asn-310 to Phe-325) must be located at the distal region of the heme moiety and form, at least, a substrate-binding region of membrane-bound P-450d.  相似文献   

12.
Cytochrome P450c21 (steroid 21-hydroxylase) is a key enzyme in the synthesis of cortisol, whose deficiency is the cause of a common genetic disease, congenital adrenal hyperplasia. We have expressed P450c21 (steroid 21-hydroxylase) in E. coli and mammalian cells. In E. coli, P450c21 cDNA was cloned into a T7 expression vector to produce a large amount of P450c21 fusion protein, which enabled antiserum production. In mammalian cells, a plasmid containing full-length P450c21 cDNA (phc21) was constructed and transfected into COS-1 cells to produce active P450c21, which was detected by immunoblotting and 21-hydroxylase activity assay. This system was used to assay mutations involved in the disease. Ile172 of phc21 corresponding to the site of mutation in some cases of the disease was mutagenized to become Asn, Leu, His, or Gln. Mutant as well as normal P450c21 was produced when their cDNAs were transfected into COS-1 cells. The mutant proteins, however, had greatly reduced 21-hydroxylase activities. Therefore, missense mutation at Ile172 resulted in inactivation of the enzyme, but not in repression of enzyme synthesis. The Leu for Ile substitution at amino acid 172 did not result in partial restoration of enzymatic activity, indicating that hydrophobicity at this residue may not play a role in its function.  相似文献   

13.
Rabbit antibodies against cytochrome P-450 (SCC), P-450 (11 beta), and P-450 (C-21) from bovine adrenal cortex were prepared, and it was confirmed that these three cytochrome P-450 species are immunologically distinct from one another. Cytoplasmic sites of synthesis of P-450 (SCC), P-450 (11 beta), and P-450 (C-21) in bovine adrenal cortex were determined by examining the presence of their nascent peptides on isolated free and bound ribosomes. Nascent peptides were released in vitro from ribosomes by [3H]puromycin in a high salt buffer in the presence of a detergent, and the nascent peptides of P-450 (SCC), P-450 (11 beta), and P-450 (C-21) were isolated by immunoprecipitation. The nascent peptides of these three cytochrome P-450 species were found in both free and bound ribosomal fractions, suggesting that they share common sites of synthesis in the cytoplasm. However, the nascent peptides of mitochondrial P-450 (SCC) and P-450 (11 beta) were more concentrated in the free ribosomal fraction, whereas those of microsomal P-450 (C-21) were more abundant in the bound ribosomal fraction. The nascent peptides of the three cytochrome P-450 species were released from the membrane-bound ribosomes of rough microsomes into the cytoplasmic surface of microsomal vesicles by puromycin treatment.  相似文献   

14.
Thr-301 of cytochrome P-450 (laurate (omega-1)-hydroxylase) was replaced by Ser, Val, Ile, or Asn via site-directed mutagenesis. The Ser-, Val-, and Asn-mutants had lower laurate (omega-1)-hydroxylase activities than the wild-type P-450. The mutation to Ser did not affect caprate (omega-1)-hydroxylase activity and rather increased caprate omega-hydroxylase activity, but the Val- and Asn-mutants could not hydroxylate caprate. The Ile-mutant was devoid of the hydroxylase activities. The mutation also led to changes in the affinities for the fatty acids and exogenous ligands. Replacement of Thr-301 of cytochrome P-450 (testosterone 16 alpha-hydroxylase) by Ser or Val also affected the activities toward testosterone and progesterone in different ways. These findings indicate that residue 301 of the P-450s plays an important role in determining their substrate specificities.  相似文献   

15.
The interaction between P-450C21 and NADPH-cytochrome P-450 reductase, both purified from bovine adrenocortical microsomes, has been investigated in a reconstituted system with a nonionic detergent, Emulgen 913, by kinetic analysis and gel filtrations. Steady state kinetic data in progesterone 21-hydroxylation showed formation of an equimolar complex between the two enzyme proteins at low Emulgen concentration. Steady state kinetic studies on the electron transfer from NADPH to P-450C21 via the reductase showed that a stable complex formation between the two enzyme proteins was not involved in the steady state electron transfer at high Emulgen concentration. In stopped flow experiments, a time course of the P-450C21 reduction showed biphasic kinetics composed of fast and slow phases. The dependence of kinetic parameters on Emulgen concentration indicates that the fast phase corresponds to the electron transfer within the complex and the slow phase to the electron transfer through a random collision between P-450C21 and the reductase. The stable complex formation between P-450C21 and the reductase has been clearly demonstrated by gel filtration. The stable complex was composed of several molecules of the two enzyme proteins at an equimolar ratio, which was active for progesterone 21-hydroxylation and had a tendency to dissociate at high Emulgen concentration.  相似文献   

16.
Regulation of cytochromes P-450 21-hydroxylase (P-450C21) and P-450 17 alpha-hydroxylase/C17,20-lyase (P-450(17) alpha,lyase) activities and impairment of this regulation by Aroclor 1254 was studied in guinea-pig adrenal microsomes. In a membrane depleted system, a decrease in the normally predominant, P-450C21 activity and an increase in P-450(17) alpha,lyase activities was observed. The same deviations were observed in intact microsomes with increase in the reaction temperature (0-40 degrees C). Breaks in Arrhenius plots for activities of P-450C21 and P-450(17) alpha,lyase correlate with transition temperatures reported for the microsomal membrane. These results point to: (1) preference of a gel state membrane for catalytic expression of P-450C21 suggesting a clustered organization of this P-450 species with reductase; (2) preference of a fluid membrane for lyase activity suggesting a random collision mechanism for reduction of P-450(17) alpha,lyase. Aroclor 1254 introduced to reaction mixtures containing intact microsomes elicited basically the same changes as caused by depletion of the microsomal membrane or by increase in the incubation temperature. Lack of effect of Aroclor 1254 on P-450C21 and P-450(17) alpha,lyase activities in the membrane depleted system demonstrates that its interference with monooxygenase activities is mediated by the microsomal membrane. The similarities between altered cytochrome P-450 mediated activities in the presence of Aroclor 1254 and the deviations observed in the membrane depleted system or upon increase in the incubation temperature may suggest that this chemical exerts its impacts by influencing membrane fluidity.  相似文献   

17.
Kim JB  Johansson A  Conlon JM 《Peptides》2001,22(3):317-323
The South African clawed frog Xenopus laevis is believed to have arisen as a result of a tetraploidization event occurring approximately 30 million years ago. Two molecular forms of pancreatic polypeptide (PP) have been isolated from an extract of the pancreas of this species and two molecular forms of peptide tyrosine-tyrosine (PYY) from the intestine. Despite the fact that the amino acid sequence of PP has, in general, been very poorly conserved during the evolution of tetrapods (only Pro(5), Pro(8), Gly(9), Ala(12), Tyr(27), Arg(33) and Arg(35) are invariant among species studied so far), the two Xenopus PPs differ by only a single amino acid substition (Asp(22)-->Glu). In contrast the two molecular forms of PYY differ by six amino acid substitutions (Glu(15)-->Gln, Thr(18)-->Ala, Leu(21)-->Met, Ile(22)-->Thr, Ile(28)-->Val, Val(31)-->Ile). The data imply that strong evolutionary pressure is acting to conserve the functional domain in both genes encoding PP and so suggest that PP may have an important physiological role in amphibians (although the nature of this role has yet to be determined). The more rapid mutation of the functional domain in the genes encoding PYY, a peptide whose amino acid sequence has been quite well conserved in tetrapods and whose physiological significance is well established, suggests that one of the PYY genes may be evolving towards a new function or towards becoming a pseudogene.  相似文献   

18.
19.

Background

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2). We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH.

Methods

A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay.

Results

Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6%) chromosomes. The most frequent mutation was I2 splice (27%) followed by Ile173Asn (26%), Arg 357 Trp (19%), Gln319stop, 16% and Leu308InsT (12%), whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state.

Conclusion

Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined.  相似文献   

20.
We have isolated cDNA clones of the mRNA for cytochrome P-450 that catalyzes the steroid C-21 hydroxylation (P-450(C21)), which specifically catalyzes 21-hydroxylation of steroids in the microsomes of bovine adrenal cortex by using synthetic oligonucleotides as probes. Sequence determination of the cloned cDNA showed that it contains 2157 nucleotides and a poly(A) chain and that a single open reading frame of 1488 nucleotides codes for a polypeptide of 496 amino acids with a molecular weight of 56,113. The deduced amino acid composition is in agreement with that determined by direct amino acid analysis of purified P-450(C21) and the predicted primary structure contained amino acid sequences of N-terminal region and two internal tryptic fragments of the protein so far analyzed. Comparing the amino acid sequence with those of other forms of P-450 reveals that a conserved amino acid sequence containing a putative heme-binding cysteine is present in the equivalent position, proximate to the COOH terminus of the molecules and that P-450(C21) is phylogenically situated in an intermediate position between steroidogenic mitochondrial cytochrome P-450 which catalyzes the side-chain cleavage of cholesterol (P-450(SCC)) and drug-metabolizing microsomal P-450s. However, the amino acid sequence of P-450(C21) is much closer to that of drug-metabolizing P-450s than to that of P-450(SCC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号