首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A J?schke 《Biological chemistry》2001,382(9):1321-1325
RNA molecules with catalytic properties have been isolated by in vitro selection from combinatorial libraries. A broad range of chemical reactions can be catalyzed, and nucleic acids can accelerate bond formation between small organic substrates. The catalytic performance of nucleic acids can be enhanced by incorporation of additional functional groups. This minireview focuses on carbon-carbon bond formation accelerated by in vitro selected ribozymes.  相似文献   

3.
Mobilization of the sulfur of cysteine as persulfide is the first step of sulfur transfer into thiamin, molydopterin, 4-thiouridine, biotin and lipoic acid, but then the pathways diverge completely. For the first three compounds, one or several proteinic persulfides are involved, ending in the nucleophilic attack of a sulfur, persulfide, sulfide or thiocarboxylate on a carbonyl equivalent. Several proteins have been newly characterized, revealing homologies between the three biosynthetic routes and evolutionary relationships. In the case of biotin, and very probably of lipoic acid, the sulfur is transferred as sulfide into the [Fe-S] center of the enzyme. This [Fe-S] center is the ultimate sulfur donor, which quenches a carbon radical on the substrate. This radical is produced by homolytic cleavage of a C-H bond by a deoxyadenosyl radical arising from the reduction of S-adenosylmethionine.  相似文献   

4.
5.
Yonath A 《Biological chemistry》2003,384(10-11):1411-1419
In the ribosome, the decoding and peptide bond formation sites are composed entirely of ribosomal RNA, thus confirming that the ribosome is a ribozyme. Precise alignment of the aminoacylated and peptidyl tRNA 3'-ends, which is the major enzymatic contribution of the ribosome, is dominated by remote interactions of the tRNA double helical acceptor stem with the distant rims of the peptidyl transferase center. An elaborate architecture and a sizable symmetry-related region within the otherwise asymmetric ribosome guide the A --> P passage of the tRNA 3'-end by a spiral rotatory motion, and ensures its outcome: stereochemistry suitable for peptide bond formation and geometry facilitating the entrance of newly formed proteins into their exit tunnel.  相似文献   

6.
7.
Optimization of enzyme-mediated peptide bond formation   总被引:1,自引:0,他引:1  
Enzyme-catalyzed peptide bond formation requires thorough examination and optimization of each coupling step. In order to identify factors influencing the selectivity between aminolysis and hydrolysis, a systematic study was carried out for the kinetically controlled peptide synthesis. The reaction temperature, the type of C-terminal protecting group, and different organic cosolvents showed little influence on the selectivity. The enzyme, excess nucleophile, pH, N-terminal protecting group, and ionic strength of the solution were identified as major factors controlling the selectivity and, therefore, the yield of the dipeptide synthesis. Under optimized conditions, the selectivity of the chymotrypsin-catalyzed synthesis of PheSer could be increased from 35 to 100%.  相似文献   

8.
1. Rat-liver supernatant catalyses the reaction of diethyl maleate with glutathione. 2. Evidence is presented that the enzyme involved is different from the known glutathione-conjugating enzymes, glutathione S-alkyltransferase, S-aryltransferase and S-epoxidetransferase. 3. Rat-liver supernatant catalyses the reaction of a number of other αβ-unsaturated compounds, including aldehydes, ketones, lactones, nitriles and nitro compounds, with glutathione: separate enzymes may be responsible for these reactions.  相似文献   

9.
Virus-like particles (VLPs) consist of a virus's outer shell but without the genome. Similar to the virus, VLPs are monodisperse nano-capsules which have a known morphology, maintain a high degree of symmetry, and can be engineered to encapsidate the desired cargo. VLPs are of great interest for vaccination, drug/gene delivery, imaging, sensing, and material science applications. Here we demonstrate the ability to control the disulfide bond formation in VLPs by directly controlling the redox potential during or after production and assembly of VLPs. The open cell-free protein synthesis environment, which has been reported to produce VLPs at yields comparable or greater than traditional in vivo technologies, was employed. Optimal conditions for disulfide bond formation were found to be VLP dependent, and a cooperative effect in the formation of such bonds was observed.  相似文献   

10.
DsbA and DsbB are responsible for disulfide bond formation. DsbA is the direct donor of disulfides, and DsbB oxidizes DsbA. DsbB has the unique ability to generate disulfides by quinone reduction. It is thought that DsbB oxidizes DsbA via thiol disulfide exchange. In this mechanism, a disulfide is formed across the N-terminal pair of cysteines (Cys-41/Cys-44) in DsbB by quinone reduction. This disulfide is then transferred on to the second pair of cysteine residues in DsbB (Cys-104/Cys-130) and then finally transferred to DsbA. We have shown here the redox potential of the two disulfides in DsbB are -271 and -284 mV, respectively, and considerably less oxidizing than the disulfide of DsbA at -120 mV. In addition, we have found the Cys-104/Cys-130 disulfide of DsbB to actually be a substrate for DsbA in vitro. These findings indicate that the disulfides in DsbB are unsuitable to function as the oxidant of DsbA. Furthermore, we have shown that mutants in DsbB that lack either pair or all of its cysteines are also capable of oxidizing DsbA. These unexpected findings raise the possibility that the oxidation of DsbA by DsbB does not occur via thiol disulfide exchange as is widely assumed but rather, directly via quinone reduction.  相似文献   

11.
12.
A procedure for the preparation of optically pure alpha-keto-gamma-hydroxy carboxylic acids through stereospecific aldol addition catalyzed by pyruvate aldolases from the Entner-Doudoroff and the DeLey-Doudoroff glycolytic pathways is described. This highly versatile fragment serves as a precursor for a variety of commonly encountered functionalities, including beta-hydroxy aldehydes and carboxylic acids, alpha-amino-gamma-hydroxy carboxylic acids and alpha,gamma-dihydroxy carboxylic acids. The protocol described here uses recombinant His6-tagged KDPG aldolase for the synthesis of (S)-4-hydroxy-2-keto-4-(2'-pyridyl)butyrate. A protocol for evaluating enantiomeric excess through formation of the gamma-lactone of the dithioacetal followed by chiral-phase gas-liquid chromatography is also described. Enzyme expression and enzymatic synthesis can be accomplished in approximately 1 week. The enzymatic aldol addition proceeds in nearly quantitative yields with enantiomeric excesses greater than 99.7%.  相似文献   

13.
In oxidative folding of proteins in the bacterial periplasmic space, disulfide bonds are introduced by the oxidation system and isomerized by the reduction system. These systems utilize the oxidizing and the reducing equivalents of quinone and NADPH, respectively, that are transmitted across the cytoplasmic membrane through integral membrane components DsbB and DsbD. In both pathways, alternating interactions between a Cys-XX-Cys-containing thioredoxin domain and other regulatory domain lead to the maintenance of oxidized and reduced states of the specific terminal enzymes, DsbA that oxidizes target cysteines and DsbC that reduces an incorrect disulfide to allow its isomerization into the physiological one. Molecular details of these remarkable biochemical cascades are being rapidly unraveled by genetic, biochemical, and structural analyses in recent years.  相似文献   

14.
Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green fluorescent protein-based redox probe termed redox sensitive YFP (rxYFP). Using yeast with genetically manipulated GSSG levels, we find that rxYFP equilibrates with the cytosolic glutathione redox buffer. Furthermore, in vivo and in vitro data show the equilibration to be catalyzed by glutaredoxins and that conditions of high intracellular GSSG confer to these a new role as dithiol oxidases. For the first time a genetically encoded probe is used to determine the redox potential specifically of cytosolic glutathione. We find it to be -289 mV, indicating that the glutathione redox status is highly reducing and corresponds to a cytosolic GSSG level in the low micromolar range. Even under these conditions a significant fraction of rxYFP is oxidized.  相似文献   

15.
Disulfide bond formation is required for the correct folding of many secreted proteins. Cells possess protein-folding catalysts to ensure that the correct pairs of cysteine residues are joined during the folding process. These enzymatic systems are located in the endoplasmic reticulum of eukaryotes or in the periplasm of Gram-negative bacteria. This review focuses on the pathways of disulfide bond formation and isomerization in bacteria, taking Escherichia coli as a model.  相似文献   

16.
Energetics of peptide bond formation at elevated temperatures   总被引:1,自引:0,他引:1  
Summary The free energies of formation of the peptide bond between carbobenzoxy-glycine and L-phenylalanine amide in aqueous solution at temperatures up to 60°C were calculated from experimentally determined equilibrium constants. The reaction was catalyzed by a thermophylic enzyme. The thermodynamic energy barrier to peptide bond formation was found to decrease with increasing temperature: the standard free energy of peptide bond formation did appear to become negative in the region of 60°C. The possible significance of these results for peptide bond formation under prebiotic conditions is discussed.  相似文献   

17.
The majority of structural efforts addressing RNA's catalytic function have focused on natural ribozymes, which catalyze phosphodiester transfer reactions. By contrast, little is known about how RNA catalyzes other types of chemical reactions. We report here the crystal structures of a ribozyme that catalyzes enantioselective carbon-carbon bond formation by the Diels-Alder reaction in the unbound state and in complex with a reaction product. The RNA adopts a lambda-shaped nested pseudoknot architecture whose preformed hydrophobic pocket is precisely complementary in shape to the reaction product. RNA folding and product binding are dictated by extensive stacking and hydrogen bonding, whereas stereoselection is governed by the shape of the catalytic pocket. Catalysis is apparently achieved by a combination of proximity, complementarity and electronic effects. We observe structural parallels in the independently evolved catalytic pocket architectures for ribozyme- and antibody-catalyzed Diels-Alder carbon-carbon bond-forming reactions.  相似文献   

18.
19.
The assembly of reduced pro-alpha chains of type I and type II procollagen into the native triple-helical molecule was examined in vitro in the presence and absence of pure protein disulfide isomerase. The data clearly indicates that protein disulfide isomerase is able to accelerate the formation of native interchain disulfide bonds in these procollagens. It takes about 6 min after disulfide bonding before triple-helical molecules exist, while the time required to produce triple-helical type I procollagen in the presence of protein disulfide isomerase is 9.4 min and that for type II procollagen 17.2 min. These values agree with those obtained for type I and II procollagen in vivo suggesting that protein disulfide isomerase is also an enzyme catalyzing interchain disulfide bond formation in procollagen in vivo. The formation of native disulfide bonds can proceed without any enzyme catalysis but then requires the presence of reduced and oxidized glutathione. Bonding is rather slow in such a case, however, resulting in a delay in the formation of the triple helix.  相似文献   

20.
The use of carboethoxysulfenyl chloride for disulfide bond formation and concomitant cyclization of five peptides was investigated. Even though cyclic peptides were obtained very rapidly and in good yields when cyclization was performed in aqueous media at different pHs (4 to 7), the final crude peptides were found to contain closely related impurities which, in the case of somatostatin and pressinoic acid, were not generated by air oxidation. This observation may limit the use of carboethoxysulfenyl chloride to those cases where other methods of disulfide bond formation prove inadequate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号