首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protein-protein association of cytochrome P-450 LM2 with NADPH-cytochrome P-450 reductase, with cytochrome b5, and with both proteins was demonstrated in reconstituted phospholipid vesicles by magnetic circular dichroism difference spectra. A 23% decrease in the absolute intensity of the Soret band of the magnetic CD spectrum of cytochrome P-450 was observed when it was reconstituted with reductase. A difference spectrum corresponding to a 7% decrease in absolute intensity was obtained when cytochrome b5 was incorporated into vesicles that already contained cytochrome P-450 and cytochrome P-450 reductase compared to a decrease of 13% in absolute intensity when cytochrome b5 was incorporated into vesicles that contained only cytochrome P-450. The use of the magnetic circular dichroism confirmed that protein-protein associations that have been detected by absorption spectroscopy between purified and detergent-solubilized proteins also exist in membranes. High ionic strength was shown to interrupt direct electron flow from cytochrome P-450 reductase to cytochrome P-450 but not the electron flow from reductase through cytochrome b5 to cytochrome P-450. Upon incorporation of cytochrome b5 into cytochrome P-450- and cytochrome P-450 reductase-containing vesicles, an increase of benzphetamine N-demethylation activity was observed. The magnitude of this increase was numerically identical to the residual activity of the reconstituted vesicles measured in the presence of 0.3 M KCl. It is concluded that there is a requirement for at least one charge pairing for electron transfer from reductase to cytochrome P-450. These observations are combined in a proposed mechanism of coupled reversible association reactions in the membrane.  相似文献   

2.
1. Two forms of soluble NADH cytochrome b5 reductase were purified from human erythrocytes. Two distinct fractions both having the NADH cytochrome b5 reductase activity eluted from the second DEAE-cellulose column were further purified by ultrafiltration and 5'-ADP-agarose affinity chromatography. 2. The final preparations were purified 9070- and 4808-fold, respectively, over hemolysate. Both reductases exhibited identical electrophoretic patterns when subjected to SDS-PAGE and apparent monomer Mr of each reductase was determined to be 32,000 +/- 1300. 3. Vmax values of reductase II for the various electron acceptors, namely, 2,6-dichlorophenolindophenol, ferricyanide and cytochrome c through cytochrome b5 were found to be 1.9, 1.8 and 2 times higher than those of reductase I. 4. Some differences were noted for reductase I and reductase II fractions. Their elution profiles from a second DEAE-cellulose column were quite different and that suggested that reductase II is more acidic than reductase I. Reductase II was found to be more sensitive to heat treatment than reductase I.  相似文献   

3.
With CYP2E1 in vitro both the first and the second electron of the catalytic cycle can come from cytochrome b(5) via either NADPH-cytochrome P450 reductase or NADH-cytochrome b(5) reductase, and the presence of cytochrome b(5) stimulates CYP2E1 turnover both in vitro and in vivo. To determine whether electron input via the NADH-dependent pathway was similarly functional in whole cells and necessary for the stimulation by cytochrome b(5), we constructed five plasmids designed to express human CYP2E1 in various combinations with cytochrome b(5) reductase, cytochrome b(5), and cytochrome P450 reductase. CYP2E1 activity in Salmonella typhimurium cells transformed with each plasmid was assessed by mutagenic reversion frequency in the presence of dimethylnitrosamine. A fivefold increase in reversion frequency when cytochrome b(5) was coexpressed with P450 reductase was abolished by disruption of heme-binding in cytochrome b(5) by site-directed mutagenesis (His68Ala), suggesting that electron transfer to cytochrome b(5) was necessary for the stimulation. Addition of cytochrome b(5) reductase to the cytochrome b(5)/P450 reductase coexpression plasmid did not further increase the stimulation by cytochrome b(5), but b(5) reductase could support CYP2E1 activity in the absence of P450 reductase at a level equivalent to that obtained with just CYP2E1 and P450 reductase. Neither cytochrome b(5) reductase nor cytochrome b(5) alone could support CYP2E1 activity. These results demonstrate that the cytochrome b(5) reductase/cytochrome b(5) pathway can support CYP2E1 activity in bacterial cells.  相似文献   

4.
The role of cytochrome b5 in adrenal microsomal steroidogenesis was studied in guinea pig adrenal microsomes and also in the liposomal system containing purified cytochrome P-450s and NADPH-cytochrome P-450 reductase. Preincubation of the microsomes with anti-cytochrome b5 immunoglobulin decreased both 17 alpha- and 21-hydroxylase activity in the microsomes. In liposomes containing NADPH-cytochrome P-450 reductase and P-450C21 or P-450(17) alpha,lyase, addition of a small amount of cytochrome b5 stimulated the hydroxylase activity while a large amount of cytochrome b5 suppressed the hydroxylase activity. The effect of cytochrome b5 on the rates of the first electron transfer to P-450C21 in liposome membranes was determined from stopped flow measurements and that of the second electron transfer was estimated from the oxygenated difference spectra in the steady state. It was indicated that a small amount of cytochrome b5 activated the hydroxylase activity by supplying additional second electrons to oxygenated P-450C21 in the liposomes while a large amount of cytochrome b5 might suppress the activity through the interferences in the interaction between the reductase and P-450C21.  相似文献   

5.
6.
An assay for determining the rate of methemoglobin reduction in hemolysates of human erythrocytes has been developed. The rates obtained by this assay, when corrected for dilution, are comparable to those obtained with intact cells. Increased ionic strength inhibits the reaction, whereas EDTA increases the rate of reduction. The rate with NADPH as electron donor is 65-70% of the rate with NADH. Added cytochrome b5 stimulates the reaction. The assay has been used to examine erythrocytes from two methemoglobinemic sisters and their asymptomatic mother. Hemolysates of the two patients have both decreased dichlorophenolindophenol reductase activity and decreased ability to reduce methemoglobin. Hemolysates from the heterozygous mother have intermediate dichlorophenolindophenol reductase activity and intermediate methemoglobin reduction ability. The data presented in this paper indicate that the concentrations of cytochrome b5 and cytochrome b5 reductase determine the rate of methemoglobin reduction in hemolysates.  相似文献   

7.
The effects of bivalent cations on cytochrome b5 reduction by NADH:cytochrome b5 reductase and NADPH:cytochrome c reductase were studied with the proteinase-solubilized enzymes. Cytochrome b5 reduction by NADH:cytochrome b5 reductase was strongly inhibited by CaCl2 or MgCl2. When 1.2 microM-cytochrome b5 was used, the concentrations of CaCl2 and MgCl2 required for 50% inhibition (I50) were 8 and 18 mM respectively. The inhibition was competitive with respect to cytochrome b5. The extent of inhibition by CaCl2 or MgCl2 was much higher than that by KCl or other alkali halides. In contrast, cytochrome b5 reduction by NADPH:cytochrome c reductase was extremely activated by CaCl2 or MgCl2. In the presence of 5 mM-CaCl2, the activity was 24-fold higher than control when 4.4 microM-cytochrome b5 was used. The magnitude of activation by CaCl2 was 2-3-fold higher than that by MgCl2. The activation by these salts was much higher than that by KCl, indicating that bivalent cations play an important role in this activation. The mechanisms of inhibition and activation by bivalent cations of cytochrome b5 reduction by these two microsomal reductases are discussed.  相似文献   

8.
Cytochrome b5 was purified from detergent solubilized sheep liver microsomes by using three successive DEAE-cellulose, and Sephadex G-100 column chromatographies. It was purified 54-fold and the yield was 23.5% with respect to microsomes. The apparent Mr of cytochrome b5 was estimated to be 16,200 +/- 500 by SDS-PAGE. Absolute absorption spectrum of the purified cytochrome b5 showed maximal absorption at 412 nm and dithionite-reduced cytochrome b5 gave peaks at 557, 526.5 and 423 nm. The ability of the purified sheep liver cytochrome b5 to transfer electrons from NADH-cytochrome b5 reductase to cytochrome c was investigated. The K(m) and Vmax values were calculated to be 0.088 microM cytochrome b5 and 315.8 microM cytochrome c reduced/min/mg enzyme, respectively. Also the reduction of cytochrome b5 by reductase was studied and K(m) and Vmax values were determined to be 5 microM cytochrome b5 and 5200 nmol cytochrome b5 reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating concentration of cytochrome b5 were found to be 0.0017 mM NADH and 6944 nmol cytochrome b5 reduced/min/mg enzyme, respectively. NADH-cytochrome b5 reductase was also partially purified from the same source, detergent solubilized sheep liver microsomes, by using two successive DEAE-cellulose, and 5'-ADP-agarose affinity column chromatographies. It was purified 144-fold and the yield was 7% with respect to microsomes. The apparent monomer Mr of reductase was estimated to be 34,000 by SDS-PAGE. When ferricyanide was used as an electron acceptor, reductase showed maximum activity between 6.8 and 7.5. The K(m) and Vmax values of the enzyme for ferricyanide were calculated as 0.024 mM ferricyanide and 673 mumol ferricyanide reduced/min/mg enzyme, respectively. The K(m) and Vmax values for the cofactor NADH in the presence of saturating amounts of ferricyanide were found to be 0.020 mM NADH and 699 mumol ferricyanide reduced/min/mg enzyme, respectively.  相似文献   

9.
The involvement of cytochrome b5 in palmitoyl-CoA desaturation by yeast microsomes was studied by using yeast mutants requiring unsaturated fatty acids and an antibody to yeast cytochrome b5. The mutants used were an unsaturated fatty acid auxotroph (strain E5) and a pleiotropic mutant (strain Ole 3) which requires either Tween 80 and ergosterol or delta-aminolevulinic acid for growth. Microsomes from the wild-type strain possessed both the desaturase activity and cytochrome b5, whereas those from mutant E5 contained the cytochrome but lacked the desaturase activity. Microsomes from mutant Ole 3 grown with Tween 80 plus ergosterol were devoid of both the desaturase activity and cytochrome b5, but those from delta-aminolevulinic acid-grown mutant Ole 3 contained cytochrome b5 and catalyzed the desaturation. The cytochrome b5 content in microsomes from mutant Ole 3 could be varied by changing the delta-aminolevulinic acid concentration in the growth medium, and the desaturase activity of the microsomes increased as their cytochrome b5 content was increased. The antibody to yeast cytochrome b5, but not the control gamma-globulin fraction, inhibited the NADH-cytochrome c reductase and NADH-dependent desaturase activities of the wild-type microsomes. It is concluded that cytochrome b5 is actually involved in the desaturase system of yeast microsomes. The lack of desaturase activity in mutant Ole 3 grown with Tween 80 plus ergosterol seems to be due to the absence of cytochrome b5 in microsomes, whereas the genetic lesion in mutant E5 appears to be located at ther terminal desaturase.  相似文献   

10.
An antibody preparation elicited against purified, lysosomal-solubilized NADH-cytochrome b5 reductase from rat liver microsomes was shown to interact with methemoglobin reductase of human erythrocytes by inhibiting the rate of erythrocyte cytochrome b5 reduction by NADH. The ferricyanide reductase activity of the enzyme was not inhibited by the antibody, suggesting that the inhibition of methemoglobin reductase activity may be due to interference with the binding of cytochrorme b5 to the flavoprotein. Under conditions of limiting concentrations of flavoprotein, the antibody inhibited the rate of methemoglobin reduction in a reconstituted system consisting of homogeneous methemoglobin reductase and cytochrome b5 from human erythrocytes. This inhibition was due to the decreased level of reduced cytochrome b5 during the steady state of methemoglobin reduction while the rate of methemoglobin reduction per reduced cytochrome b5 stayed constant, suggesting that the enzyme was not concerned with an electron transport between the reduced cytochrome b5 and methemoglobin.An antibody to purified, trypsin-solubilized cytochrome b5 from rat liver microsomes was shown to inhibit erythrocyte cytochrome b5 reduction by methemoglobin reductase and NADH to a lesser extent than microsomal cytochrome b5 preparations from rat liver (trypsin solubilized or detergent solubilized) and pig liver (trypsin solubilized). The results presented establish that soluble methemoglobin reductase and cytochrome b5 of human erythrocytes are immunochemically similar to NADH-cytochrome b5 reductase and cytochrome b5 of liver microsomes, respectively.  相似文献   

11.
Cytochrome b(5), a 17-kDa hemeprotein associated primarily with the endoplasmic reticulum of eukaryotic cells, has long been known to augment some cytochrome P450 monooxygenase reactions, but the mechanism of stimulation has remained controversial. Studies in recent years have clarified this issue by delineating three pathways by which cytochrome b(5) augments P450 reactions: direct electron transfer of both required electrons from NADH-cytochrome b(5) reductase to P450, in a pathway separate and independent of NADPH-cytochrome P450 reductase; transfer of the second electron to oxyferrous P450 from either cytochrome b(5) reductase or cytochrome P450 reductase; and allosteric stimulation of P450 without electron transfer. Evidence now indicates that each of these pathways is likely to operate in vivo.  相似文献   

12.
The widely accepted catalytic cycle of cytochromes P450 (CYP) involves the electron transfer from NADPH cytochrome P450 reductase (CPR), with a potential for second electron donation from the microsomal cytochrome b5/NADH cytochrome b5 reductase system. The latter system only supported CYP reactions inefficiently. Using purified proteins including Candida albicans CYP51 and yeast NADPH cytochrome P450 reductase, cytochrome b5 and NADH cytochrome b5 reductase, we show here that fungal CYP51 mediated sterol 14alpha-demethylation can be wholly and efficiently supported by the cytochrome b5/NADH cytochrome b5 reductase electron transport system. This alternative catalytic cycle, where both the first and second electrons were donated via the NADH cytochrome b5 electron transport system, can account for the continued ergosterol production seen in yeast strains containing a disruption of the gene encoding CPR.  相似文献   

13.
The effect of Ca2+ or Mg2+ on cytochrome b5 reduction by porcine liver microsomes was examined using trypsin-solubilized cytochrome b5 as a substrate. The reduction of exogenous cytochrome b5 by microsomes was low at 1.2 microM cytochrome b5 (3.9 or 2.7 nmol/min/mg protein, respectively, with NADH or NADPH). The addition of CaCl2 greatly enhanced either NADH-dependent or NADPH-dependent cytochrome b5 reduction. At 2 mM CaCl2, the reduction rate was increased to 23- or 18-fold of control, respectively with NADH or NADPH. The concentration for half-maximal effect (EC50) was 0.5 or 0.6 mM in the NADH or NADPH systems, respectively. MgCl2 also stimulated cytochrome b5 reduction with a EC50 value of 1.0 mM in the NADH system or 0.6 mM in the NADPH system. The comparison with the result with KCl indicated that the activation by CaCl2 or MgCl2 is caused mainly by their divalent cation moiety. The Km value for cytochrome b5 was decreased and the Vmax was increased by calcium with either the NADH- or the NADPH-dependent system. NADH-ferricyanide reductase activity was not affected by calcium, but NADPH-ferricyanide reductase activity was stimulated as well as NADPH-cytochrome c reductase activity. In the presence of Triton X-100, divalent cations were inhibitory in NADH-dependent cytochrome b5 reduction, and in contrast, stimulative in NADPH-dependent reaction. These findings suggest that the activation of cytochrome b5 reduction by divalent cations in the NADH system is mainly due to an increasing accessibility of the substrate, and in the NADPH system, in addition to this, a direct effect of divalent cations on NADPH-cytochrome P450 reductase is also involved.  相似文献   

14.
Native cytochrome b5 interacts with either RLM5 or LM2 to form tight equimolar complexes (Kd = 250 and 540 nM, respectively) in which the content of high spin cytochrome P-450 was substantially increased. Cytochrome b5 caused 3- and 7-fold increases in the binding affinities of RLM5 and LM2 for benzphetamine, respectively, and benzphetamine decreased the apparent Kd for cytochrome b5 binding. Upon formation of the ternary complex between cytochromes P-450, b5, and benzphetamine the percentage of cytochrome P-450 in the high spin state was increased from 28 to 74 (RLM5) and from 9 to 85 (LM2). Cytochrome b5 caused 13- and 7-fold increases in the rate of RLM5- and LM2-dependent p-nitroanisole demethylation, respectively. Amino-modified (ethyl acetimidate or acetic anhydride) cytochrome b5 produced results similar to those obtained above with native cytochrome b5. In contrast, modification of as few as 5 mol of carboxyl groups/mol of amidinated cytochrome b5 resulted in both a substantial loss of the spectrally observed interactions with either cytochrome P-450 LM2 or cytochrome P-450 RLM5, and in a loss of the cytochrome b5-mediated stimulation of p-nitroanisole demethylation catalyzed by either monooxygenase. In further studies, native and fully acetylated cytochromes b5 reoxidized carbonmonoxy ferrous LM2 at least 20 times faster than amidinated, carboxyl-modified cytochrome b5 derivatives. In contrast, amidination, or acetylation of amino groups, or amidination of amino groups plus methylamidination of the carboxyl groups did not appreciably slow the rate of reduction of the cytochrome b5 by NADPH-cytochrome P-450 reductase. Collectively, the results provide strong evidence for an essential role of cytochrome b5 carboxyl groups in functional interactions with RLM5 and LM2.  相似文献   

15.
Cytochrome b5 has been shown to stimulate, inhibit or have no effect on catalysis by P450 cytochromes. Its action is known to depend on the isozyme of cytochrome P450, the substrate, and experimental conditions. Cytochrome P450 2B4 (CYP 2B4) has been used in our laboratory as a model isozyme to study the role of cytochrome b5 in cytochrome P450 catalysis using two substrates, methoxyflurane and benzphetamine. One substrate is the volatile anesthetic, methoxyflurane, whose metabolism is consistently markedly stimulated by cytochrome b5. The other is benzphetamine, whose metabolism is minimally modified by cytochrome b5. Determination of the stoichiometry of the metabolism of both substrates showed that the amount of product formed is the net result of the simultaneous stimulatory and inhibitory actions of cytochrome b5 on catalysis. Site-directed mutagenesis studies revealed that both cytochrome b5 and cytochrome P450 reductase interact with cytochrome P450 on its proximal surface on overlapping but non-identical binding sites. Comparison of the rate of reduction of oxyferrous CYP 2B4 and the rate of substrate oxidation by cyt b5 and reductase with stopped-flow spectrophotometric and rapid chemical quench experiments has demonstrated that although cytochrome b5 and reductase reduce oxyferrous CYP 2B4 at the same rate, substrate oxidation proceeds more slowly in the presence of the reductase.  相似文献   

16.
Male pigs are routinely castrated to prevent the accumulation of testicular 16-androstene steroids, in particular 5α-androst-16-en-3-one (5α-androstenone), which contribute to an off-odour and off-flavour known as boar taint. Cytochrome P450C17 (CYP17A1) catalyses the key regulatory step in the formation of the 16-androstene steroids from pregnenolone by the andien-β synthase reaction or the synthesis of the glucocorticoid and sex steroids via 17α-hydroxylase and C17,20 lyase pathways respectively. We have expressed CYP17A1, along with cytochrome P450 reductase (POR), cytochrome b5 reductase (CYB5R3) and cytochrome b5 (CYB5) in HEK-293FT cells to investigate the importance of the two forms of porcine CYB5, CYB5A and CYB5B, in both the andien-β synthase as well as the 17α-hydroxylase and C17,20 lyase reactions. Increasing the ratio of CYB5A to CYP17A1 caused a decrease in 17α-hydroxylase (p < 0.013), a transient increase in C17,20 lyase, and an increase in andien-β synthase activity (p < 0.0001). Increasing the ratio of CYB5B to CYP17A1 also decreased 17α-hydroxylase, but did not affect the andien-β synthase activity; however, the C17,20 lyase, was significantly increased. These results demonstrate the differential effects of two forms of CYB5 on the three activities of porcine CYP17A1 and show that CYB5B does not stimulate the andien-β synthase activity of CYP17A1.  相似文献   

17.
NADPH-cytochrome c reductase also reduces cytochrome b 5. The reduction is very slow when the proteins are in solution or bound to different membranes. Only when both proteins share a common membrane, is cytochrome b 5 reduced rapidly by NADPH. The difference in reaction rates indicates recombination on a common membrane of cytochrome b 5 and NADPH reductase originally bound to different vesicles. The recombination of the two proteins occurs with a variety of biological membranes (previously enriched with either reductase or cytochrome b 5) as well as with liposomes. We explain this process as protein transfer rather than vesicle fusion for several reasons: 1. The vesicles do not alter shape or size during incubation. 2. The rate of this process corresponds to the rate of incorporation of the single proteins into liposomes carrying the 'complementary' protein. 3. The exchange of proteins between biological membranes and liposomes occupied by protein does not change the density of either membrane. Protein transfer between membranes appears to be limited to those proteins which had spontaneously recombined with a preformed membrane. In contrast, proteins incorporated into liposomes by means of a detergent were not transferred, nor were endogenous cytochrome b 5 and NADPH-cytochrome c reductase transferred from microsomes to Golgi membranes or lipid vesicles. We conclude that the endogenous proteins and proteins incorporated in the presence of a detergent are linked to the membrane in another manner than the same proteins which had been inserted into a preformed membrane.  相似文献   

18.
Incubation of rabbit liver microsomes with alkaline phosphatase resulted in a marked decrease of NADPH-dependent monooxygenase activities. This decrease was found to be correlated with the decrease of NADPH-cytochrome c reductase activity catalyzed by NADPH-cytochrome P-450 reductase. Neither the content of cytochrome P-450, as determined from its CO difference spectrum, nor the peroxide-supported demethylase activity catalyzed by cytochrome P-450 alone was affected by the phosphatase treatment. NADH-cytochrome b5 reductase and cytochrome b5 were not affected by the phosphatase either. NADPH-cytochrome P-450 reductase purified from rabbit liver microsomes lost its NADPH-dependent cytochrome c reductase activity upon incubation with phosphatase in a way similar to that of microsome-bound reductase. Flavin analysis showed that the phosphatase treatment caused a decrease of FMN with concomitant appearance of riboflavin. Alkaline phosphatase, therefore, inactivates the reductase by attacking its FMN, and the inactivation of the reductase, in turn, leads to a decrease of the microsomal monooxygenase activities.  相似文献   

19.
Incubation of rat homogeneous detergent-solubilized cytochrome b5 with rat liver microsomes resulted in specific binding of the hemoprotein which was rapidly reduced by NADH. The NADH cytochrome c reductase activity in these preparations increased in proportion to the amount of cytochrome bound. However, the extra-bound detergent-solubilized cytochrome b5 did inhibit NADPH-dependent N-demethylations, the NADH synergism and NADPH cytochrome P-450 reductase activity. Manganese protoporphyrin-apocytochrome complex when bound to microsomes in amounts equivalent to detergent-solubilised cytochrome b5 showed no effect on N-demethylation activity. Furthermore, the binding of cytochrome b5 preparations reconstituted from heme and apocytochrome b5 had no effect on either the NADPH-dependent N-demethylation of aminopyrene or ethylmorphine or the NADH synergism observed with rat liver microsomes. In addition, homogeneous cytochrome b5 eluted from three additional Sephadex G-100 columns showed no inhibitory effects when bound to liver microsomes. Spectral analyses of the acid-acetone extract of the hemoprotein showed an absorption peak at 278 nm suggesting that the homogeneous b5 contains contaminating amounts of tightly bound detergent which is responsible for the observed inhibition of mixed function oxidase activity and which is removed during extraction of the heme from the apocytochrome and during further gel filtration applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号