首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An important task in the application of Markov models to the analysis of ion channel data is the determination of the correct gating scheme of the ion channel under investigation. Some prior knowledge from other experiments can reduce significantly the number of possible models. If these models are standard statistical procedures nested like likelihood ratio testing, provide reliable selection methods. In the case of non-nested models, information criteria like AIC, BIC, etc., are used. However, it is not known if any of these criteria provide a reliable selection method and which is the best one in the context of ion channel gating. We provide an alternative approach to model selection in the case of non-nested models with an equal number of open and closed states. The models to choose from are embedded in a properly defined general model. Therefore, we circumvent the problems of model selection in the non-nested case and can apply model selection procedures for nested models.  相似文献   

3.
Metal ions affect ion channels either by blocking the current or by modifying the gating. In the present review we analyse the effects on the gating of voltage-gated channels. We show that the effects can be understood in terms of three main mechanisms. Mechanism A assumes screening of fixed surface charges. Mechanism B assumes binding to fixed charges and an associated electrostatic modification of the voltage sensor. Mechanism C assumes binding and an associated non electrostatic modification of the gating. To quantify the non-electrostatic effect we introduced a slowing factor, A. A fourth mechanism (D) is binding to the pore with a consequent pore block, and could be a special case of Mechanisms B or C. A further classification considers whether the metal ion affects a single site or multiple sites. Analysing the properties of these mechanisms and the vast number of studies of metal ion effects on different voltage-gated on channels we conclude that group 2 ions mainly affect channels by classical screening (a version of Mechanism A). The transition metals and the Zn group ions mainly bind to the channel and electrostatically modify the gating (Mechanism B), causing larger shifts of the steady-state parameters than the group 2 ions, but also different shifts of activation and deactivation curves. The lanthanides mainly bind to the channel and both electrostatically and non-electrostatically modify the gating (Mechanisms B and C). With the exception of the ether-à-go-go-like channels, most channel types show remarkably similar ion-specific sensitivities.  相似文献   

4.
Genetic diversity among the K and D alleles of the mouse major histocompatibility complex is generated by gene conversion among members of the class I multigene family. The majority of known class I mutants contain clusters of nucleotide changes that can be traced to linked family members. However, the details of the gene conversion mechanism are not known. The bm3 and bm23 mutations represent exceptions to the usual pattern and provide insight into intermediates generated during the gene conversion process. Both of these variants contain clusters of five nucleotide substitutions, but they differ from the classic conversion mutants in the important respect that no donor gene for either mutation could be identified in the parental genome. Nevertheless, both mutation clusters are composed of individual mutations that do exist within the parent. Therefore, they are not random and appear to be templated. Significantly, the bm3 and bm23 mutation clusters are divided into overlapping regions that match class I genes which have functioned as donor genes in other characterized gene conversion events. The unusual structure of the mutation clusters indicates an underlying gene conversion mechanism that can generate mutation clusters as a result of the interaction of three genes in a single genetic event. The unusual mutation clusters are consistent with a hypothetical gene conversion model involving extrachromosomal intermediates.  相似文献   

5.
Iron is an essential nutrient required for a variety of biochemical processes. It is a vital component of the heme in hemoglobin, myoglobin, and cytochromes and is also an essential cofactor for non-heme enzymes such as ribonucleotide reductase, the limiting enzyme for DNA synthesis. When in excess, iron is toxic because it generates superoxide anions and hydroxyl radicals that react readily with biological molecules, including proteins, lipids, and DNA. As a result, humans possess elegant control mechanisms to maintain iron homeostasis by coordinately regulating iron absorption, iron recycling, and mobilization of stored iron. Disruption of these processes causes either iron-deficient anemia or iron overload disorders. In this minireview, we focus on the roles of recently identified proteins in the regulation of iron homeostasis.  相似文献   

6.
C Y Lee 《FEBS letters》1992,311(2):81-84
This paper proposes a detailed gating mechanism for the N-methyl-D-aspartate (NMDA) channel. In the NMDAR1 subunit, the signal of agonist binding may be carried from Y456 to W590 through an electron transport chain, including W480 which could be the glycine modulatory site. The channel's opening may arise from repulsion between negatively charged W590s, analogous to W435s of the Shaker K+ channel. The cyclic nucleotide-gated channels may be activated by a similar mechanism, but the opening of nicotinic acetylcholine receptor (nAChR) channels is likely to be initiated by the formation of tyrosine radicals. The role of disulfide-bonded cysteines in the redox modulation can also be explained.  相似文献   

7.
Reptation theory is a highly successful approach for describing polymer dynamics in entangled systems. In turn, this molecular process is the basis of viscoelasticity. We apply a modified version of reptation dynamics to develop an actual physical model of ion channel gating. We show that at times longer than microseconds these dynamics predict an alpha-helix-screw motion for the amphipathic protein segment that partially lines the channel pore. Such motion has been implicated in several molecular mechanics studies of both voltage-gated and transmitter-gated channels. The experimental probability density function (pdf) for this process follows t-3/2 which has been observed in several experimental systems. Reptation theory predicts that channel gating will occur on the millisecond time scale and this is consistent with experimental results from single-channel recording. We examine the consequences of reptation over random barriers and we show that, to first order, the pdf remains unchanged. In the case of a charged helix undergoing reptation in the presence of a transmembrane potential we show that the tail of the pdf will be exponential. We provide a list of practical experimental predictions to test the validity of this physical theory.  相似文献   

8.
The NaChBac prokaryotic sodium channel appears to be a descendent of an evolutionary link between voltage-gated KV and CaV channels. Like KV channels, four identical six-transmembrane subunits comprise the NaChBac channel, but its selectivity filter possesses a signature sequence of eukaryotic CaV channels. We developed structural models of the NaChBac channel in closed and open conformations, using K+-channel crystal structures as initial templates. Our models were also consistent with numerous experimental results and modeling criteria. This study concerns the pore domain. The major differences between our models and K+ crystal structures involve the latter portion of the selectivity filter and the bend region in S6 of the open conformation. These NaChBac models may serve as a stepping stone between K+ channels of known structure and NaV, CaV, and TRP channels of unknown structure.  相似文献   

9.
《Trends in microbiology》2023,31(3):219-221
In most bacteria, cell division is orchestrated by the tubulin homolog FtsZ. To ensure the correct placement of the division machinery, FtsZ activity needs to be tightly regulated. Corrales-Guerrero et al. now describe the molecular details of how MipZ, an alphaproteobacterial regulator, interacts with FtsZ to promote proper cell division.  相似文献   

10.
Patch clamp data from the large conductance mechanosensitive channel (MscL) in E. coli was studied with the aim of developing a strategy for statistical analysis based on hidden Markov models (HMMs) and determining the number of conductance levels of the channel, together with mean current, mean dwell time and equilibrium probability of occupancy for each level. The models incorporated state-dependent white noise and moving average adjustment for filtering, with maximum likelihood parameter estimates obtained using an EM (expectation-maximisation) based iteration. Adjustment for filtering was included as it could be expected that the electronic filter used in recording would have a major effect on obviously brief intermediate conductance level sojourns. Preliminary data analysis revealed that the brevity of intermediate level sojourns caused difficulties in assignment of data points to levels as a result of over-estimation of noise variances. When reasonable constraints were placed on these variances using the better determined noise variances for the closed and fully open levels, idealisation anomalies were eliminated. Nevertheless, simulations suggested that mean sojourn times for the intermediate levels were still considerably over-estimated, and that recording bandwidth was a major limitation; improved results were obtained with higher bandwidth data (10 kHz sampled at 25 kHz). The simplest model consistent with these data had four open conductance levels, intermediate levels being approximately 20%, 51% and 74% of fully open. The mean lifetime at the fully open level was about 1 ms; estimates for the three intermediate levels were 54-92 micros, probably still over-estimates.  相似文献   

11.
Separable gating mechanisms in a Mammalian pacemaker channel   总被引:2,自引:0,他引:2  
Despite permeability to both K(+) and Na(+), hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels contain the K(+) channel signature sequence, GYG, within the selectivity filter of the pore. Here, we show that this region is involved in regulating gating in a mouse isoform of the pacemaker channel (mHCN2). A mutation in the GYG sequence of the selectivity filter (G404S) had different effects on the two components of the wild-type current; it eliminated the slowly activating current (I(f)) but, surprisingly, did not affect the instantaneous current (I(inst)). Confocal imaging and immunocytochemistry showed G404S protein on the periphery of the cells, consistent with the presence of channels on the plasma membrane. Experiments with the wild-type channel showed that the rate of I(f) deactivation and I(f) amplitude had a parallel dependence on the ratio of K(+)/Na(+) driving forces. In addition, the amplitude of fully activated I(f), unlike I(inst), was not well predicted by equal and independent flow of K(+) and Na(+). The data are consistent with two separable gating mechanisms associated with pacemaker channels: one (I(f)) that is sensitive to voltage, to a mutation in the selectivity filter, and to driving forces for permeating cations and another (I(inst)) that is insensitive to these influences.  相似文献   

12.
Chemokine receptor CCR3 is highly expressed by eosinophils and signals in response to binding of the eotaxin family of chemokines, which are up-regulated in allergic disorders. Consequently, CCR3 blockade is of interest as a possible therapeutic approach for the treatment of allergic disease. We have described previously a bispecific antagonist of CCR1 and CCR3 named UCB35625 that was proposed to interact with the transmembrane residues Tyr-41, Tyr-113, and Glu-287 of CCR1, all of which are conserved in CCR3. Here, we show that cells expressing the CCR3 constructs Y113A and E287Q are insensitive to antagonism by UCB35625 and also exhibit impaired chemotaxis in response to CCL11/eotaxin, suggesting that these residues are important for antagonist binding and also receptor activation. Furthermore, mutation of the residue Tyr-113 to alanine was found to turn the antagonist UCB35625 into a CCR3 agonist. Screens of small molecule libraries identified a novel specific agonist of CCR3 named CH0076989. This was able to activate eosinophils and transfectants expressing both wild-type CCR3 and a CCR1-CCR3 chimeric receptor lacking the CCR3 amino terminus, indicating that this region of CCR3 is not required for CH0076989 binding. A direct interaction with the transmembrane helices of CCR3 was supported by mutation of the residues Tyr-41, Tyr-113, and Glu-287 that resulted in complete loss of CH0076989 activity, suggesting that the compound mimics activation by CCL11. We conclude that both agonists and antagonists of CCR3 appear to occupy overlapping sites within the transmembrane helical bundle, suggesting a fine line between agonism and antagonism of chemokine receptors.  相似文献   

13.
14.
15.
16.
The bacterial mechanosensitive channel MscS provides an excellent model system for the study of mechanosensitivity and for investigations into the cellular response to hypoosmotic shock. Numerous studies have elucidated the structure, function and gating mechanism of Escherichia coli MscS, providing a wealth of information for the comparative analysis of MscS family members in bacteria, archaea, fungi and plants. We recently reported the electrophysiological characterization of MscS-Like (MSL)10, a MscS homolog from the model flowering plant Arabidopsis thaliana. Here we summarize our results and briefly compare MSL10 to previously described members of the MscS family. Finally, we comment on how this and other recently published studies illuminate the possible mechanisms by which ion selectivity is accomplished in this fascinating family of channels.  相似文献   

17.
We analyzed voltage-dependent ion channel structure and conformational changes corresponding to channel gating. During the gating, S4 segments, as well as other parts of the channel, undergo a set of conformational modifications. These changes are accompanied by complicated movements of positive charges that are mostly located in the S4 segments. These charges electrostatically interact with the ions passing through the channel. The interaction energy depends on the conformational state of the channel, i.e., on the mutual positions of the permeant ions and these charges. Analyzing and making energetical estimations, we propose a hypothesis: the closed state of the ion channel corresponds to the S4 position when electrostatic interaction between positively charged groups of the S4 segments and permeant ions is strong enough to close the pathway for these ions.  相似文献   

18.
We describe a new electrophysiological technique called nonequilibrium response spectroscopy, which involves application of rapidly fluctuating (as high as 14 kHz) large-amplitude voltage clamp waveforms to ion channels. As a consequence of the irreversible (in the sense of Carnot) exchange of energy between the fluctuating field and the channel protein, the gating response is exquisitely sensitive to features of the kinetics that are difficult or impossible to adequately resolve by means of traditional stepped potential protocols. Here we focus on the application of dichotomous (telegraph) noise voltage fluctuations, a broadband Markovian colored noise that fluctuates between two values. Because Markov kinetic models of channel gating can be embedded within higher-dimensional Markov models that take into account the effects of the voltage fluctuations, many features of the response of the channels can be calculated algebraically. This makes dichotomous noise and its generalizations uniquely suitable for model selection and kinetic analysis. Although we describe its application to macroscopic ionic current measurements, the nonequilibrium response method can also be applied to gating and single channel current recording techniques. We show how data from the human cardiac isoform (hH1a) of the Na+ channel expressed in mammalian cells can be acquired and analyzed, and how these data reveal hidden aspects of the molecular kinetics that are not revealed by conventional methods.  相似文献   

19.
20.
A structurally conserved protein translocation channel is formed by the heterotrimeric Sec61 complex in eukaryotes, and SecY complex in archaea and bacteria. Electron microscopy studies suggest that the channel may function as an oligomeric assembly of Sec61 or SecY complexes. Remarkably, the recently determined X-ray structure of an archaeal SecY complex indicates that the pore is located at the center of a single molecule of the complex. This structure suggests how the pore opens perpendicular to the plane of the membrane to allow the passage of newly synthesized secretory proteins across the membrane and opens laterally to allow transmembrane segments of nascent membrane proteins to enter the lipid bilayer. The electron microscopy and X-ray results together suggest that only one copy of the SecY or Sec61 complex within an oligomer translocates a polypeptide chain at any given time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号