首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fundamental issues in zinc biology are how proteins control the concentrations of free Zn(II) ions and how tightly they interact with them. Since, basically, the Zn(II) stability constants of only two cytosolic zinc enzymes, carbonic anhydrase and superoxide dismutase, have been reported, the affinity for Zn(II) of another zinc enzyme, sorbitol dehydrogenase (SDH), was determined. Its log K is 11.2 +/- 0.1, which is similar to the log K values of carbonic anhydrase and superoxide dismutase despite considerable differences in the coordination environments of Zn(II) in these enzymes. Protein tyrosine phosphatase 1B (PTP 1B), on the other hand, is not classified as a zinc enzyme but is strongly inhibited by Zn(II), with log K = 7.8 +/- 0.1. In order to test whether or not metallothionein (MT) can serve as a source for Zn(II) ions, it was used to control free Zn(II) ion concentrations. MT makes Zn(II) available for both PTP 1B and the apoform of SDH. However, whether or not Zn(II) ions are indeed available for interaction with these enzymes depends on the thionein (T) to MT ratio and the redox poise. At ratios [T/(MT + T) = 0.08-0.31] prevailing in tissues and cells, picomolar concentrations of free Zn(II) are available from MT for reconstituting apoenzymes with Zn(II). Under conditions of decreased ratios, nanomolar concentrations of free Zn(II) become available and affect enzymes that are not zinc metalloenzymes. The match between the Zn(II) buffering capacity of MT and the Zn(II) affinity of proteins suggests a function of MT in controlling cellular Zn(II) availability.  相似文献   

2.
3.
The effect of zinc ions on B16 mouse melanoma lines, HeLa cells and I-221 epithelial cells was investigated in vitro in order to ascertain whether sensitivity to Zn2+ is a general feature of cells in vitro and in an attempt to elucidate the mechanism(s) of zinc cytotoxicity. The proliferation of B16, HeLa and I-221 cell lines was inhibited by 1.25 x 10(-4), 1.50 x 10(-4) and 1.50 x 10(-4) mol/l Zn2+, respectively. The free radical scavengers, methimazole and ethanol, did not suppress the toxicity of Zn2+, neither did superoxide dismutase or catalase. The addition of the chelating agent EDTA reduced the zinc cytotoxicity. It was possible to suppress the cytotoxicity of zinc by increasing the concentration of either Fe2+ or Ca2+ but not Mg2+, which suggests that a prerequisite for the toxic action of zinc is entry into cells using channels that are shared with iron or calcium. This view was supported by experiments in which transferrin intensified the cytotoxic action of zinc in serum-free medium. Another agent facilitating zinc transport, prostaglandin E2, inhibited the proliferation of the B16 melanoma cell line. There were no conspicuous differences in zinc toxicity to pigmented and unpigmented cells. The toxic effect of zinc in the cell systems studied exceeded that of iron, copper, manganese and cobalt in the same concentration range. In vitro, Zn2+ should be regarded as a dangerous cation.  相似文献   

4.
5.
Two groups of 16 rats each were fed the same diet with 12.9 ppm Zn. Nine days after each animal was injected with65Zn for assessing fecal zinc of endogenous origin, zinc intake and excretion were determined for a six-day period at the age of about five (group I) and nine (II) weeks. At mean growth rates of 5.1 and 5.2 g/day, food consumption per gram of gain was 2.01 g in group I vs 2.86 g in II. Overall, zinc retention amounted to 21 vs 25 μg Zn/g of gain. Apparent absorption averaged 92 vs 74% of Zn intake (132 vs 189 μg/day), while true absorption averaged 98 vs 92%. It was concluded that endogenous fecal zinc excretion was limited to the indispensable loss (F em) in group I (7 μg/day), while it exceeded this minimum loss in group II (33 μg/day). True retention, which reflected total zinc utilization (true absorption times metabolic efficiency), was derived from apparent absorption plusF em (11 μg/day for group II according to the greater metabolic body size of the rats). It averaged 98% of Zn intake in group I vs 80% in group II. The mean metabolic efficiency was 100% vs 87%. The conclusion was that these marked differences between age groups in utilizing the dietary zinc reflected the efficient homeostatic adjustments in absorption and endogenous excretion of zinc to the respective zinc supply status.  相似文献   

6.
In Bacillus subtilis, hydrogen peroxide (H2O2) induces expression of the PerR regulon including catalase (KatA), alkyl hydroperoxide reductase and the DNA-binding protein MrgA. We have identified the P-type metal-transporting ATPase ZosA (formerly YkvW) as an additional member of the perR regulon. Expression of zosA is induced by H2O2 and repressed by the PerR metalloregulatory protein, which binds to two Per boxes in the promoter region. Physiological studies implicate ZosA in Zn(II) uptake. ZosA functions together with two Zur-regulated uptake systems and one known efflux system to maintain Zn(II) homeostasis. ZosA is the major pathway for zinc uptake in cells growing with micromolar levels of Zn(II) that are known to repress the two Zur-regulated transporters. A perR mutant is sensitive to high levels of zinc, and this sensitivity is partially suppressed by a zosA mutation. ZosA is important for resistance to both H2O2 and the thiol-oxidizing agent diamide. This suggests that increased intracellular Zn(II) may protect thiols from oxidation. In contrast, catalase is critical for H2O2 resistance but does not contribute significantly to diamide resistance. Growth of cells with elevated zinc significantly increases resistance to high concentrations of H2O2, and this effect requires ZosA. Our results indicate that peroxide stress leads to the upregulation of a dedicated Zn(II) uptake system that plays an important role in H2O2 and disulphide stress resistance.  相似文献   

7.
A transposon (Tn 10 dCam) insertion mutant of Escherichia coli K-12 was isolated that exhibited hypersensitivity to zinc(II) and cadmium(II) and, to a lesser extent, cobalt(II) and nickel (II). The mutated gene, located between 75.5 and 76.2 min on the chromosome, is named zntA (for Zn(II) transport or tolerance). The metal-sensitive phenotype was complemented by a genomic DNA clone mapping at 3677.90–3684.60 kb on the physical map. Insertion of a kanamycin resistance (KnR) cassette at a Sal  I site in a subcloned fragment generated a plasmid that partially complemented the zinc(II)-sensitive phenotype. DNA sequence analysis revealed that the KnR cassette was located within the putative promoter region of an ORF ( o732 or yhhO ) predicted to encode a protein of 732 amino acids, similar to cation transport P-type ATPases in the Cpx-type family. Inverse PCR and sequence analysis revealed that the Tn 10 dCam element was located within o732 in the genome of the zinc(II)-sensitive mutant. The zntA mutant had elevated amounts of intracellular and cell surface-bound Zn(II), consistent with the view that zntA + encodes a zinc(II) efflux protein. Exposure of the z ntA mutant to cobalt(II) and cadmium(II) also resulted in elevated levels of intracellular and cell surface-bound metal ions.  相似文献   

8.
Ferritin is a ubiquitous iron-storage protein that has 24 subunits. Each subunit of ferritins that exhibit high Fe(II) oxidation rates has a diiron binding site, the so-called ferroxidase center (FC). The role of the FC appears to be essential for the iron-oxidation catalysis of ferritins. Studies of the iron oxidation by mammalian, bacterial, and archaeal ferritin have indicated different mechanisms are operative for Fe(II) oxidation, and for inhibition of the Fe(II) oxidation by Zn(II). These differences are presumably related to the variations in the amino acid residues of the FC and/or transport channels. We have used a combination of UV–vis spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry to study the inhibiting action of Zn(II) ions on the iron-oxidation process by apoferritin and by ferritin aerobically preloaded with 48 Fe(II) per 24-meric protein, and to study a possible role of phosphate in initial iron mineralization by Pyrococcus furiosus ferritin (PfFtn). Although the empty FC can accommodate two zinc ions, binding of one zinc ion to the FC suffices to essentially abolish iron-oxidation activity. Zn(II) no longer binds to the FC nor does it inhibit iron core formation once the FC is filled with two Fe(III). Phosphate and vanadate facilitate iron oxidation only after formation of a stable FC, whereupon they become an integral part of the core. These results corroborate our previous proposal that the FC in PfFtn is a stable prosthetic group, and they suggest that its formation is essential for iron-oxidation catalysis by the protein.  相似文献   

9.
10.
11.
12.
To help determine physiologically important routes by which zinc (Zn) is acquired by human fetal vascular endothelium, the authors incubated cultured umbilical vein endothelial cells with65Zn(II)-tracer labeled human fetal whole serum, ultrafiltrate (containing low molecular mass serum zinc complexes), and dialyzed serum (containing protein-bound zinc). Zinc from whole serum and from both serum fractions entered a rapidly labeled cellular compartment removable by edetic acid (EDTA), representing Zn bound to the outside cell surface, and accumulatively, an EDTA-resistant compartment’probably largely internalized Zn. Entry of Zn into the EDTA-resistant pool from both serum fractions was strongly temperature-dependent, and was not via the EDTA-sensitive pool. Entry from the ultrafiltrate was resolvable into high affinity saturable, and non-(or hardly-) saturable components. Transfer from the dialyzed serum fraction was not significantly saturable, but only partially accounted for by nonspecific pinocytosis. Thus, Zn is obtained by fetal vascular endothelium partly from low molecular mass serum species, probably through at least one carrier-mediated membrane transport system; but also from Zn complexed with serum protein, via at least one metabolism-related route.  相似文献   

13.
14.
A role in signal transduction for a vanishingly small labile pool of intracellular zinc ([Zn](i)) has been inferred by the sensitivity of various physiological pathways to zinc chelators such as N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) and/or associations with changes in nonprotein-bound zinc-sensitive fluorophores. Although we (44) reported that LPS-induced apoptosis in cultured sheep pulmonary artery endothelial cells (SPAEC) was exacerbated by TPEN, 1) we did not detect acute (30 min) changes in [Zn](i), and 2) it is unclear from other reports whether LPS increases or decreases [Zn](i) and whether elevations or decreases in [Zn](i) are associated with cell death and/or apoptosis. In the present study, we used both chemical (FluoZin-3 via live cell epifluorescence microscopy and fluorescence-activated cell sorting) and genetic (luciferase activity of a chimeric reporter encoding zinc-sensitive metal-response element and changes in steady-state mRNA of zinc importer, SLC39A14 or ZIP14) techniques to show that LPS caused a delayed time-dependent (2-4 h) decrease in [Zn](i) in SPAEC. A contributory role of decreases in [Zn](i) in LPS-induced apoptosis (as determined by caspase-3/7 activation, annexin-V binding, and cytochrome c release) in SPAECs was revealed by mimicking the effect of LPS with the zinc chelator, TPEN, and inhibiting LPS- (or TPEN)-induced apoptosis with exogenous zinc. Collectively, these are the first data demonstrating a signaling role for decrease in [Zn](i) in pulmonary endothelial cells and suggest that endogenous levels of labile zinc may affect sensitivity of pulmonary endothelium to the important and complex proapoptotic stimulus of LPS.  相似文献   

15.
Artificial hemoglobins have been prepared with Mn(III) and Zn(II) tetrasulfonated phthalocyanines in place of heme. Their structure and properties have been investigated by difference spectroscopy, CD, epr, electrophoresis, and molecular weight estimation.Spectrophotometric titration data indicate the ratio of the reagents in this process to be 1:1. The visible absorption spectra show the main peak at 625 nm for the manganese compound and 681 nm for the zinc one. It is evident from CD experiments that incorporation of Mn(III)L into apohemoglobin increases helical content of the protein whereas that of Zn(II)L increases its unfolding due to the change of electronic configuration of Zn(II) ion on coordination with the protein.On the basis of spectroscopic and epr data, the formula of the manganese complex is suggested to be (O)Mn(IV)L-globin, whereas that of the zinc complex Zn(II)L-globin. Electrophoresis and molecular weight estimation indicate both complexes to be dimers.Manganese complex binds additional ligands as CN?, imidazole, CO, and NO. Spectroscopic and epr data indicate reduction of the manganese complex and formation of the NO adduct with probable formula (NO)+Mn(II)L-globin. Mechanism of this process is suggested.Both phthalocyanine globins are not able to combine reversibly with oxygen and cannot act as physiological oxygen carriers.  相似文献   

16.
17.
Islet amyloid polypeptide (IAPP) is a neuroendocrine hormone from pancreatic β-cells. Misfolded, aggregated IAPP is believed to be toxic to islet cells and amyloid deposits in the pancreas are pathological hallmarks of type 2 diabetes. Rapid fibrillization of this peptide makes it difficult to study in its soluble form, impeding a better understanding of its role. In this study, a variety of popular pretreatment methods were tested for their ability to delay aggregation of IAPP, including solutions of hexafluoroisopropanol, sodium hydroxide, hydrochloric acid, phosphate buffered saline, ammonium hydroxide, as well as tris buffer at different pH and containing either calcium (II), zinc (II), or iron (II). Aggregation was assessed using the thioflavin T fluorescence assay as well as by transmission electron microscopy. Tris buffer at pH 8.1 containing Zn(II) was found to have the best balance of temporary inhibition of aggregation and biological relevance.  相似文献   

18.
Industrial activity over the last two centuries has increased heavy metal contamination worldwide, leading to greater human exposure. Zinc is particularly common in industrial effluents and although an essential nutrient, it is highly toxic at elevated concentrations. Photoautotrophic microbes hold promise for heavy metal bioremediation applications because of their ease of culture and their ability to produce sulfide through metabolic processes that in turn are known to complex with the metal ion, Hg(II). The green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium Synechococcus leopoliensis were all able to synthesize sulfide and form zinc sulfide when exposed to Zn(II). Supplementation of their respective media with sulfite and cysteine had deleterious effects on growth, although ZnS still formed in Cyanidioschyzon cells to the same extent as in unsupplemented cells. The simultaneous addition of sulfate and Zn(II) had similar effects to that of Zn(II) alone in all three species, whereas supplying sulfate prior to exposure to Zn(II) enhanced metal sulfide production. The coupled activities of serine acetyltransferase and O-acetylserine(thiol)lyase (SAT/OASTL) did not increase significantly in response to conditions in which enhanced ZnS formation occurred; sulfate added prior to and simultaneously with Zn(II). However, even low activity could provide sufficient sulfate assimilation over this relatively long-term study. Because the extractable activity of cysteine desulfhydrase was elevated in cells that produced higher amounts of zinc sulfide, cysteine is the probable source of the sulfide in this aerobic process.  相似文献   

19.
Desulfovibrio gigas desulforedoxin (Dx) consists of two identical peptides, each containing one [Fe-4S] center per monomer. Variants with different iron and zinc metal compositions arise when desulforedoxin is produced recombinantly from Escherichia coli. The three forms of the protein, the two homodimers [Fe(III)/Fe(III)]Dx and [Zn(II)/Zn(II)]Dx, and the heterodimer [Fe(III)/Zn(II)]Dx, can be separated by ion exchange chromatography on the basis of their charge differences. Once separated, the desulforedoxins containing iron can be reduced with added dithionite. For NMR studies, different protein samples were prepared labeled with (15)N or (15)N + (13)C. Spectral assignments were determined for [Fe(II)/Fe(II)]Dx and [Fe(II)/Zn(II)]Dx from 3D (15)N TOCSY-HSQC and NOESY-HSQC data, and compared with those reported previously for [Zn(II)/Zn(II)]Dx. Assignments for the (13)C(alpha) shifts were obtained from an HNCA experiment. Comparison of (1)H-(15)N HSQC spectra of [Zn(II)/Zn(II)]Dx, [Fe(II)/Fe(II)]Dx and [Fe(II)/Zn(II)]Dx revealed that the pseudocontact shifts in [Fe(II)/Zn(II)]Dx can be decomposed into inter- and intramonomer components, which, when summed, accurately predict the observed pseudocontact shifts observed for [Fe(II)/Fe(II)]Dx. The degree of linearity observed in the pseudocontact shifts for residues >/=8.5 A from the metal center indicates that the replacement of Fe(II) by Zn(II) produces little or no change in the structure of Dx. The results suggest a general strategy for the analysis of NMR spectra of homo-oligomeric proteins in which a paramagnetic center introduced into a single subunit is used to break the magnetic symmetry and make it possible to obtain distance constraints (both pseudocontact and NOE) between subunits.  相似文献   

20.
In a previous work, it was shown that in cells after a decrease of cellular glutathione content, toxic zinc effects, such as protein synthesis inhibition or GSSG (glutathione, oxidized form) increases, were enhanced. In this study, zinc toxicity was determined by detection of methionine incorporation as a parameter of protein synthesis and GSSG increase in various lung cell lines (A549, L2, 11Lu, 16Lu), dependent on enhanced GSSG reductase activities and changed glutathione contents. After pretreatment of cells with dl-buthionine-[R,S]-sulfoximine (BSO) for 72 h, cellular glutathione contents were decreased to 15–40% and GSSG reductase activity was increased to 120–135% in a concentration-dependent manner. In BSO pretreated cells, the IC50 values of zinc for methionine incorporation inhibition were unchanged as compared to cells not pretreated. The GSSG increase in BSO pretreated cells by zinc was enhanced in L2, 11Lu, and 16Lu cells, whereas in A549 cells, the GSSG increase by zinc was enhanced only after pretreatment with the highest BSO concentration. Inhibition of GSSG reductase in alveolar epithelial cells was observed at lower zinc concentrations than needed for methionine incorporation inhibition, whereas in fibroblastlike cells, inhibition of GSSG reductase occurred at markedly higher zinc concentrations as compared to methionine incorporation inhibition. These results demonstrate that GSSG reductase is an important factor in cellular zinc susceptibility. We conclude that reduction of GSSG is reduced in zinc-exposed cells. Therefore, protection of GSH oxidation by various antioxidants as well as enhancement of GSH content are expected to be mechanisms of diminishing toxic cellular effects after exposure to zinc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号