首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Efficient design of fluidized-bed biomolecule adsorption from crude feed stock requires particles with elevated density, large adsorption capacity and broad chemical stability. Moreover, combinations of small particle diameters with high densities allow for high fluidization velocities while preserving a rapid mass transfer.This approach has been implemented by combining stable porous mineral oxide of high density (2.2, 4.7, 5.7, 9.4 g/ml) with functionalized hydrogels. The cross-linked hydrogel derivative fills the internal porosity of the beads and provides a high equilibrium binding capacity.Various porous mineral oxides (silica, titania, zirconia and hafnia) have been characterized in term of fluidization behavior, surface reactivity and chemical resistance to harsh CIP procedures. Porous zirconia particles were also modified into ion-exchangers by suitable surface modification and intraparticle polymerization of functionalized stable derivatives of acrylic monomers. Back-mixings in fluidized bed columns were analyzed by residence time distribution analysis of inert tracers. 328 and 218 mixing plates per meter were found for respectively, bed expansions of 1.7 and 2.9. The dynamic protein adsorption behaviors of zirconia-based polymeric anion-exchange sorbents were obtained in fluidized-bed, using BSA as model protein. A dynamic binding capacity of 62 mg/ml was observed at a fluidizing velocity of 320 cm/h. These investigations substantiate the favorable physical and chemical characteristics anticipated for dense composite beads for use as fluidized bed adsorbents.  相似文献   

2.
A new fluid distribution system designed for expanded bed adsorption was introduced and studied in a 150-cm diameter column. Based on fluid application through a rotating distributor, it eradicates the need for perforated plates, meshes, or local mixers. The effect of rotation rate on column performance was examined by fluidizing a 30-cm high bed of supports with tap water and introducing pulses of dye or acetone tracer. Linear bed expansion was seen as the superficial fluid velocity was raised from 170 x h(-1) to 450 cm x h(-1) (3000 L x h(-1) to 8000 L x h(-1)), and there was little change in expansion characteristics as distributor rotation rate was increased from 2.5 to 10 rpm. The distributor was observed to generate a flow pattern suitable for expanded bed adsorption when the supports were fluidized at a superficial fluid velocity of 283 cm center dot h(-1) and dye pulses introduced. At a rotation rate of 2.5 rpm, no significant dead zones were observed, and a discrete band was formed that moved up through the bed. Furthermore, the pattern of dye movement could be used to calculate interstitial linear fluid velocities of 460 cm x h(-1) and 572 cm x h(-1) at the column wall and center, respectively, indicating a parabolic flow profile. The distributor rotation rate giving the best operating conditions was found to be 2.5 rpm when the bed was fluidized at a flow velocity of 283 cm x h(-1) and the residence time distribution of acetone tracer examined. Under these conditions, the coefficient of axial dispersion was 6.1 x 10(-6) m(2) x s(-1) and 29 theoretical plates were measured. When the rotation rate was raised to 10 rpm, the coefficient of axial dispersion increased to 8.08 x 10(-6) m(2) x s(-1) and the number of theoretical plates decreased to 22.  相似文献   

3.
Municipal sewage sludge was immobilized with a modified alginate gel entrapment method, and the immobilized cells were used to produce hydrogen gas in a three-phase fluidized bed. The hydrogen-producing fluidized beds were operated at different liquid velocity (U(0)) and hydraulic retention time (HRT). The results show that in response to operating liquid velocities, the fluidized-bed system had three flow regimes, namely, plug flow, slug flow, and free bubbling. Pressure fluctuation analysis was used to analyze the hydrodynamic properties in this three-phase fluidized bed when it was under a steady-state production of biogas. With a steady-state biogas production rate (U(g)) of 0.196 mL/s/L, a transition state occurred at a liquid velocity (U(0)) of 0.85 cm/s. As U(0) < 0.85 cm/s, the system was basically a nonhomogeneous fluidized bed, whereas the bed became homogeneous when U(0) was higher than 0.85 cm/s. The fluidized bed can be stably carried out at high loading rates (HRT as low as 2 h). Hydrogen fermentation results show that the maximal hydrogen production rate was 0.93 L/h/L and the best yield (Y(H)2(/sucrose)) was 2.67 mol H(2)/mol sucrose.  相似文献   

4.
The development of biofilms in polyethylene sheets and particles was studied using downflow reactors with synthetic nutrient media made up of a mixture of volatile fatty acids. Results suggest a preferential immobilization of acetoclastic organisms in the inner space of the surfaces and the colonization by the butyrotrophic bacteria in the outer layers. After 101 days the bioparticles reached a specific acetociastic activity of 72.45mol acetic acid/g protein ·h while the biofilms had 58.80 mol acetic acid/g protein attached ·h. Due to the low density of the polyethylene particles low fluidization velocities would be needed (2m/h) in a downflow fluidized bed reactor.  相似文献   

5.
Continuous culture may be an efficient way of producing proteins which are susceptible to secondary processing in the course of a fermentation process. Short residence times in these systems support the production of correctly assembled proteins by avoiding substrate limitations and product inhibitions and also minimize the contact of sensitive bioproducts with degrading enzymes. Thus products of increased stability and integrity are obtained from continuous processes. The downstream process following continuous culture has to be adapted to the specific conditions of continuous fermentations, e.g. large liquid volumes and diluted process solutions. In this paper an approach is shown how a fluidized bed adsorption as first recovery operation may be coupled directly to a continuous production. Immobilized hybridoma cells are cultivated in porous glass microcarriers in a continuous fluidized bed process, the cell containing harvest is purified by fluidized bed adsorption using an agarose based cation exchange matrix. By this coupled mode of operation the large biomass containing harvest volume resulting from the continuous cultivation may be applied directly to a fluidized chromatographic matrix without prior clarification, leading to a particle free and initially purified product solution of reduced volume. In an experimental setup a bench-scale fluidized bed bioreactor of 25 ml carrier volume was coupled to a fluidized bed adsorption column operated with 300 ml of adsorbent. This configuration yielded up to 20 mg of monoclonal antibody per day in a cell free solution at fourfold concentration and fivefold purification. The process was run for more than three weeks with consistent product output.The help of H. Schmitz, A. Bader, J. Gätgens and M. Halfar during the experiments is gratefully acknowledged. This work was partially funded by the ministry of science and research of the Federal Republic of Germany within the project Stoffumwandlung mit Biokatalysatoren.  相似文献   

6.
Summary Three different materials, kaolin, pozzolana and biolite (a material used in a commercial anaerobic fluidized bed treatment process) when tested as supports for an anaerobic fluidized bed system had similar physical and fluidization properties but behaved differently towards the biomass hold-up. However, all three systems attained similar removal efficiency rates.Nomenclature U Fluidization velocity (m/s) - U1 Terminal fluidization velocity (m/s) - g Local acceleration due to gravity (m/s2) - s Solid density (kg/m3) - f Fluid density (kg/m3) - P Pressure drop (Pa) - HRT Hydraulic retention time (days) - Hmf Height of bed at minimum fluidization (m) - H Height of bed (m) - Cd Drag coefficient (dimensionless) - W Mass of solids in bed (kg) - dp Particle diameter (m) - A Cross-sectional area of column (m2) - h column height (m) - Rct Terminal Reynolds no. - Voidagc (fractional free volume, dimensionless) - mf Voidage (fractional free volume) at minimum of fluidization (dimensionless)  相似文献   

7.
Elution in expanded bed mode has been investigated in the expanded bed adsorption process. Elution was performed at different sample loads and at different liquid velocities using bovine serum albumin as a model. The effect on mixing in the liquid phase and on the volume of the eluted peak were determined. Mixing in the liquid phase was almost unaffected when elution was performed at 100 cm/h, regardless of sample load. However, mixing increased significantly when elution was carried out at high liquid velocities (300 cm/h) at high sample loads. The eluted peak volume increased with liquid velocity and increased sample load. It was approx. 80% higher in expanded bed mode than in packed bed from an adsorbent completely saturated with protein eluted at 300 cm/h.  相似文献   

8.
The expanded bed characteristics of 75-103microm fluoride-modified zirconia (FmZr) particles synthesized by a fed batch oil emulsion process were investigated. These particles are distinguished from commercially available expanded-bed adsorbents by virtue of their high density (2.8 g/cc) and the mixed mode protein retention mechanism which allows for the retention of both cationic and anionic proteins. The linear velocity versus bed porosity data agree with the Richardson-Zaki relationship with the terminal velocity in infinite medium of 2858.4 cm/h and a bed expansion index of 5.1. Residence time distribution (RTD) studies and bovine serum albumin (BSA) adsorption studies were performed as a function of the height of the settled bed to the column diameter (H:D) ratio and degree of bed expansion with superficial velocities of 440 to 870 cm/h. The settled bed, a 2x expanded bed, and a 3x expanded bed were studied for the H:D ratios of 1:1, 2:1, and 3:1. The dynamic binding capacity (DBC) at 5% breakthrough was low (2-8 mg BSA/mL settled bed) and was independent of the H:D ratio or the degree of bed expansion. The saturation DBC was 32.3 +/- 7.0 mg BSA/mL settled bed. The adsorption-desorption kinetics and intraparticle diffusion for protein adsorption on FmZr (38-75 micrometer) were investigated by studying the packed bed RTD and BSA adsorption as a function of temperature and flow rate. The data show that the adsorption-desorption kinetics along with intraparticle diffusion significantly influence protein adsorption on FmZr. Low residence times ( approximately 0.8 min) of BSA result in a DBC at 5% breakthrough which is 3.5-fold lower compared to that at 6-fold higher protein residence time. At low linear velocity (45 cm/h) the breakthrough curve is nearly symmetrical and becomes asymmetrical and more dispersed at higher linear velocity (270 cm/h) due to the influence of slow adsorption-desorption kinetics and intraparticle diffusion.Copyright 1998 John Wiley & Sons, Inc. Bioeng 60: 333-340, 1998.  相似文献   

9.
Ma Y  Hira D  Li Z  Chen C  Furukawa K 《Bioresource technology》2011,102(12):6650-6656
The anaerobic ammonium oxidation (anammox) process has attracted considerable attention in recent years as an alternative to conventional nitrogen removal technologies. In this study, an innovative hybrid reactor combining fluidized and fixed beds for anammox treatment was developed. The fluidized bed was mechanically stirred and the gaseous product could be rapidly released from the anammox sludge to prevent washout of the sludge caused by floatation. The fixed bed comprising a non-woven biomass carrier could efficiently catch sludge to reduce washout. During the operation, nitrogen loading rates to the reactor were increased to 27.3 kg N/m3/d, with total nitrogen removal efficiencies of 75%. The biomass concentration in the fluidized bed reached 26-g VSS/L. Anammox granules were observed in the reactors, with settling velocities and sludge volumetric index of 27.3 ± 6.5 m/h and 23 mL/g, respectively. Quantification of extracellular polymeric substances revealed the anammox granules contained a significant amount of extracellular proteins.  相似文献   

10.
Calcium alginate microbeads (212-425 microm) were prepared by spraying 2% (w/v) alginate solution into 1 M CaCl2 solution. The fluidization behavior of these beads was studied, and the bed expansion index and terminal velocity were found to be 4.3 and 1808 cm h(-1), respectively. Residence time distribution curves showed that the dispersion of the protein was much less with these microbeads than with conventionally prepared calcium alginate macrobeads when both kinds of beads were used for chromatography in a fluidized bed format. The fluidized bed of these beads was used for the purification of pectinase from a commercial preparation. The media performed well even with diluted feedstock; 90% activity recovery with 211-fold purification was observed.  相似文献   

11.
A robust new adsorptive separation technique specifically designed for direct product capture from crude bioprocess feedstreams is introduced and compared with the current bench mark technique, expanded bed adsorption. The method employs product adsorption onto sub-micron sized non-porous superparamagnetic supports followed by rapid separation of the loaded adsorbents from the feedstock using high gradient magnetic separation technology. For the recovery of Savinase® from a cell-free Bacillus clausii fermentation liquor using bacitracin-linked adsorbents, the integrated magnetic separation system exhibited substantially enhanced productivity over expanded bed adsorption when operated at processing velocities greater than 48 m h–1. Use of the bacitracin-linked magnetic supports for a single cycle of batch adsorption and subsequent capture by high gradient magnetic separation at a processing rate of 12 m h–1 resulted in a 2.2-fold higher productivity relative to expanded bed adsorption, while an increase in adsorbent collection rate to 72 m h–1 raised the productivity to 10.7 times that of expanded bed adsorption. When the number of batch adsorption cycles was then increased to three, significant drops in both magnetic adsorbent consumption (3.6 fold) and filter volume required (1.3 fold) could be achieved at the expense of a reduction in productivity from 10.7 to 4.4 times that of expanded bed adsorption.  相似文献   

12.
Summary From bibliographic data the biomass correlations (organic dry weight) are constructed for the subsurface layer of a hypothetical 30 m deep silty sand station: 200 g/ml macrofauna (including 120 g/ml subsurface deposit feeders), 50 g/ml meiofauna, 20 g/ml Foraminifera, 1 g/ml Ciliata and Flagellata, and 100 g/ml bacteria. ATP-biomass is discussed.Meiofauna and Foraminifera contribute with 30 and 12% to the living biomass in the sediment, and it is assumed that their contribution to the food of deposit-feeding macrofauna is of a similar percentage. This is corroborated by productivity estimations.Bacteria are the main food of deposit feeding macrofauna, meiofauna, and microfauna. From different calculations it becomes evident that the productivity of bacteria in the sediment is far below figures achieved in experimental cultures: the conclusion is that sediment bacteria, in general, do not live under good environmental conditions.A rather large part of the bacterial population in the sediment seems to be in the stationary phase of life, and only a fraction of the total population exhibits high metabolic rates and rapid duplications. Only these active bacteria are of importance for the breakdown of relatively refractive organic matter in the sediment.In soft bottom marine sediments where the input of organic matter is higher than the remineralization rate, benthic animals stimulate by their activities and by nutrient cycling the decomposition of detritus via bacteria. Though meiofauna, in principle, feeds upon the same food resource as macrofauna, there is no real competition for food, because meiofaunal animals by their activities and by excreting metabolic end products induce a bacterial productivity which would not be there without them, and feed on it. There are a few examples where more specialized interactions exist between benthic animals and bacteria; these interactions have been termed gardening. They could be highly important in the benthic ecosystem.  相似文献   

13.
Hydrodynamic characteristics of two-phase inverse fluidized bed   总被引:1,自引:0,他引:1  
Hydrodynamic characteristics of a new mode of liquid-solid fluidization, termed as inverse fluidization in which low density floating particles are fluidized with downward flow of liquid, are experimentally investigated. The experiments are carried out with low density particles (<534 kg/m3) which allow high liquid throughputs in the system. During the operation, three regimes, namely, packed, semi-fluidization and fully fluidization are encountered. Empirical correlations are proposed to predict the pressure drop in each regime. A computational procedure is developed to simulate the variation of pressure drop with liquid velocity.List of Symbols Ar modified Archimedes number, d p 3 (– s)g/2 - d p particle diameter, mm - f friction factor (eq. 2) - g acceleration due to gravity, m/s2 - H total bed height, m - H c height of the column, m - Hf height of fluidized bed, m - H0 height of initial bed, m - Hp height of the packed bed, m - (p) pressure drop across the bed, N/m2 - (p) f pressure drop across fluidized bed section, N/m2 - (p) p pressure drop across the packed bed section, N/m2 - (p) sf total pressure drop in semifluidization regime, N/m2 - Re Reynolds number, d pU 1/ - Rem modified Reynolds number, d pU 1/(1– p) - U 1 superficial liquid velocity, m/s - Umf minimum fluidization velocity, m/s - Uosf onset fluidization velocity, m/s Greek Letters f voidage of fluidized bed - p voidage of packed bed - liquid viscosity, kg/ms - liquid density, kg/m3 - s particle density, kg/m3  相似文献   

14.
Capillary column (320-m ID) liquid chromatography is an essential tool for the separation and concentration of low-picomole amounts of proteins and peptides for mass-spectrometric based structural analysis. We describe a detailed procedure for the fabrication of stable and efficient 50- to 180-m ID polyimide fused-silica columns. Columns were packed by conventional slurry packing with reversed-phase silica-based supports followed by column bed consolidation with acetonitrile and sonication. PVDF membrane or internal fused-silica particles were employed for column end-frit construction. The ability of these columns to withstand high back pressures (300–400 bar) enabled their use for rapid chromatography (>3400 cm/hr; i.e., 40 l/min for 200-m ID columns) and the loading of large sample volumes (up to 500 l). The accurate low flow rates (0.4–4.0 l/min) and precise gradient formation necessary to operate these columns were achieved by a simple modification of conventional HPLC systems [Moritz et al. (1992), J. Chromatogr. 599, 119–130]. Column performance was evaluated for ability to resolve low-fmol amounts of all components of a mixture of PTH-amino acids and to separate peptides for on-line LC/MS analysis of peptide mixtures derived from in situ digestion of 2-DE resolved protein spots.  相似文献   

15.
A biofilm fluidized sand bed column reactor (14 L) has been operated in the three-phase mode on a soluble glucose-yeast hydrolysate substrate in which the biofilm-sand phase (1-2.5 L) was suspended by direct aeration of the bed. Within two weeks a tight biofilm was formed whose activity resulted in a 90% reduction, with loads of 10.7 kg TC/m(3)day. The residence time was 1 h. The biofilm remained intact during operation with high residence times (up to 23 h) over three weeks. Oxygen transfer coefficients varied with aeration rate and sand quantity between 0.02 and 0.04 s(-1) during non growth conditions; they decreased with increasing amounts of clean sand and were higher and relatively independent of the sand fraction with biofilm-covered sand. Aeration rates used in the 14 L reactor were 23-40 L/min (2.4-4.1 cm/s) and were sufficient to suspend 78-92% f the biofilm-covered sand. Clean sand was 50-75% suspended. Oxygen uptake rates varied between 15.4 and 23.1 mol/m(3) h.  相似文献   

16.
Nowotny  I.  Dähne  J.  Klingelhöfer  D.  Rothe  G.M. 《Plant and Soil》1998,199(1):29-40
Effects of soil acidification and liming on biomass responses and free Al, Ca, K, Mg, Mn and P contents of mycorrhizal roots of mature Norway spruce (Picea abies [L.] Karst.) were studied at Höglwald Forest in Southern Germany.At the untreated site, mycorrhizal root biomass was lower in the acid humus (pH = 3.3) than in the less acid upper (0–5 cm) mineral soil (pH 4.1). Mycorrhizal roots from the humus contained 10% of the level free Al in mycorrhizal roots from the upper mineral soil. During seven years of soil acidification the quantity of mycorrhizal roots remained unaffected in the humus and the upper mineral soil, perhaps due to the high buffering capacity of the humus which prevented a significant alteration of the nutrient status of the roots. However, two years after soil acidification had been terminated, the percentage of mycorrhizal roots in the humus decreased, possibly because the free root concentrations of K had decreased.On the other hand, six years after liming, there was a two-fold increase of the annual mean quantity of mycorrhizal roots in the humus. Compensatory liming (acid irrigation after liming) had a similar effect on mycorrhizal root production in the humus. However, two years after acid irrigation had been terminated a decrease of mycorrhizal roots in the upper mineral soil (0–5 cm) was observed. Since the total amount of mycorrhizal roots in the humus and upper mineral soil remained constant, compensatory liming produced a shift in fine roots to the humus layer.The higher mass of living mycorrhizal roots in the upper mineral soil (0–5 cm) as compared to the humus of the untreated plot as well as the increased mass of mycorrhizal roots in the humus after liming or compensatory liming are both attributed to an increase in pH to 4.5 rather than alleviation of Al toxicity.  相似文献   

17.
The quantity of -l-fucosidase activity in human serum is determined by heredity. An individual may inherit either low, intermediate, or high serum enzyme activity. An enzyme-linked immunoabsorbent assay has been developed that can detect 0.3 ng of -l-fucosidase protein. Enzyme protein in serum of 102 individuals ranged from 20 to 835 ng/ml. The group included individuals with low, intermediate, and high enzyme activity. The specific activity of -l-fucosidase within this group was statistically the same (mean±SD=11,002±1051 U/mg). Thus, individuals with low and intermediate enzyme activity in serum had lower amounts of enzyme protein with the same specific activity as in individuals with high enzyme activity. Fucosidosis is a rare inherited disease in which -l-fucosidase activity in tissues and body fluids is low or absent. The concentrations of enzyme protein in sera of a fucosidosis patient and parents were 76, 565, and 604 ng/ml, respectively, and the specific activities of enzyme were 1316, 8938, and 8858 U/mg, respectively. Thus, the fucosidosis serum probably contained a structurally altered enzyme with reduced catalytic activity. The somewhat low specific activities in the parents suggested that their sera contained both structurally altered and normal protein.This research was supported by National Institutes of Health Grants AM 32161 and GM 31425.  相似文献   

18.
The influences of various experimental parameters on the dynamic adsorption capacity (DAC) and the dynamic adsorption rate (DAR) of a biomimetic affinity silica-based adsorbent in fluidized and packed bed columns operated under plug flow conditions and at different temperatures have been investigated with different inlet concentrations of hen egg white lysozyme (HEWL) and human serum albumin (HSA). The DACs as well as the DARs of both the fluidized and packed beds were examined at 10% saturation (i.e., at the QB value) and the experimental data compared with the corresponding data obtained from batch equilibrium adsorption procedures. Parameters examined included the fluid superficial velocity and protein concentration and their effect on the binding capacity and column efficiency. Consistent with various results reported from this and other laboratories on the behavior of biospecific affinity adsorbents derived from porous silica and zirconia particles, adsorbents prepared from Fractosil 1000 were found to exhibit appropriate rheological characteristics in fluidized bed systems under the experimental conditions. Moreover, changes in temperature resulted in a more significant effect on the breakthrough profiles of HSA compared to HEWL with the immobilized Cibacron Blue F3G-A with Fractosil 1000 adsorbent. This result suggests that temperature effects can possibly be employed profitably in some processes as part of a strategy to enhance column performance with fluidized bed systems for selective recovery of target proteins. At relatively low superficial velocities of the feed, the DARs with HEWL and HSA were similar for both the fluidized and packed bed column systems, whereas, at high superficial velocities, the DARs for these proteins were larger with the packed bed columns.  相似文献   

19.
Summary The liquid and solids mixing in fluidized bed bio-reactors containing particles with a density only slightly higher than water (1100 kg/m3) is generally consistent with the results found in previous studies for reactors with particles of higher density. The liquid mixing can be described by an axial dispersion model for a large variety of conditions while the solids follow the streamlines of the liquid. In the presence of a gas phase the degree of mixing of both the liquid and the solid phase increased. This effect became larger with increasing reactor diameter. In the extrapolation of laboratory data of three phase fluidized bed bio-reactors to pilot plant systems this effect should be taken into account. The liquid and solids mixing may have a substantial effect on overall conversion rates and on possible microbial stratification in the reactor.Nomenclature Bo Bodenstein number v L/D (-) - D r diameter of the fluidized bed reactor (m) - D 1 Dispersion coefficient of the liquid phase (m2/s) - D g dispersion coefficient of the solid phase (m2/s) - E(in) normalized dye concentration function entering the ideally mixed tank reactor (-) - E(t) normalized dye concentration function as measured (-) - L length of the axial dispersed reactor (m) - t time after dye injection (s) - t m time constant for microbial selection (s) - t s solid mixing time constant (s) - t time interval in which a particle migrates within the bed (s) - v t superficial gas velocity (m/s) - v g superficial liquid velocity (m/s) - z migration distance of a particle in the bed (m) - 1 in situ growth rate of a dominant organism (s-1) - 2 in situ growth rate of a recessive organism (s-1) - average residence time in the axial dispersed reactor (s) - t average residence time in the ideally mixed tank reactor (s)  相似文献   

20.
A mineral salts medium supplemented with peptone and 40mg% cystine supported enhanced sporulation (1011spores/ ml) and high yields of insecticidal crystal protein (17.2mg/ml) in Bacillus thuringiensis subsp. kurstaki (3a3b) in 2.0l baffled aerated cylinders. These high yields could also be achieved with defatted soybean and groundnut seed meal extracts when supplemented with cystine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号