首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bystander effect describes radiation-like damage in unirradiated cells either in the vicinity of irradiated cells or exposed to medium from irradiated cells. This study aimed to further characterize the poorly understood mitochondrial response to both direct irradiation and bystander factor(s) in human keratinocytes (HPV-G) and Chinese hamster ovarian cells (CHO-K1). Oxygen consumption rates were determined during periods of state 4, state 3 and uncoupled respiration. Mitochondrial mass was determined using MitoTracker FM. CHO-K1 cells showed significantly reduced oxygen consumption rates 4 h after exposure to 5 Gy direct radiation and irradiated cell conditioned medium (ICCM) and an apparent recovery 12-24 h later. The apparent recovery was likely due to the substantial increase in mitochondrial mass observed in these cells as soon as 4 h after exposure. HPV-G cells, on the other hand, showed a sustained increase in oxygen consumption rates after ICCM exposure and a transient increase 4 h after exposure to 5 Gy direct radiation. A significant increase in mitochondrial mass per HPV-G cell was observed after exposure to both direct radiation and ICCM. These findings are indicative of a stress response to mitochondrial dysfunction that increases the number of mitochondria per cell.  相似文献   

2.
Exposure of unirradiated human keratinocytes to irradiated cell conditioned medium (ICCM) is known to cause a cascade of events that leads to reproductive death and apoptosis. This study investigates the effect of ICCM on clonogenic survival, mitochondrial mass and BCL2 expression in unirradiated keratinocytes. Exposure to 5 mGy, 0.5 Gy and 5 Gy ICCM resulted in a significant decrease in clonogenic survival. Human keratinocytes incubated with ICCM containing an antioxidant, N-acetylcysteine, showed no significant decrease in clonogenic survival. HPV-G cells incubated with ICCM containing a caspase 9 inhibitor showed no significant decrease in clonogenic survival when the ICCM dose was < or =0.5 Gy. A significant increase in mitochondrial mass per cell was observed after exposure to 5 mGy and 0.5 Gy ICCM. A change in the distribution of the mitochondria from a diffuse cytoplasmic distribution to a more densely concentrated perinuclear distribution was also observed at these doses. No significant increase in mitochondrial mass or change in distribution of the mitochondria was found for 5 Gy ICCM. Low BCL2 expression was observed in HPV-G cells exposed to 5 mGy or 0.5 Gy ICCM, whereas a large significant increase in BCL2 expression was observed in cells exposed to 5 Gy ICCM. This study has shown that low-dose irradiation can cause cells to produce medium-borne signals that can cause mitochondrial changes and the induction of BCL2 expression in unirradiated HPV-G cells. The dose dependence of the mitochondrial changes and BCL2 expression suggests that the mechanisms may be aimed at control of response to radiation at the population level through signaling pathways.  相似文献   

3.
The aim of this study was to investigate whether exposure of HPV-G cells to irradiated cell conditioned medium (ICCM) could induce an adaptive response if the cells were subsequently challenged with a higher ICCM dose. Clonogenic survival and major steps in the cascade leading to apoptosis, such as calcium influx and loss of mitochondrial membrane potential, were examined to determine whether these events could be modified by giving a priming dose of ICCM before the challenge dose. Clonogenic survival data indicated an ICCM-induced adaptive response in HPV-G cells "primed" with 5 mGy or 0.5 Gy ICCM for 24 h and then exposed to 0.5 Gy or 5 Gy ICCM. Reactive oxygen species (ROS) were found to be involved in the bystander-induced cell death. Calcium fluxes varied in magnitude across the exposed cell population, and a significant number of the primed HPV-G cells did not respond to the challenge ICCM dose. No significant loss of mitochondrial membrane potential was observed when HPV-G cells were exposed to 0.5 Gy ICCM for 24 h followed by exposure to 5 Gy ICCM for 6 h. Exposure of HPV-G cells to 5 mGy ICCM for 24 h followed by exposure to 0.5 Gy ICCM for 18 h caused a significant increase in mitochondrial mass and a change in mitochondrial location, events associated with the perpetuation of genomic instability. This study has shown that a priming dose of ICCM has the ability to induce an adaptive response in HPV-G cells subsequently exposed to a challenge dose of ICCM.  相似文献   

4.
Bystander and delayed effects after fractionated radiation exposure   总被引:3,自引:0,他引:3  
Human immortalized keratinocytes were exposed to a range of single or fractionated doses of gamma rays from (60)Co, to medium harvested from donor cells exposed to these protocols, or to a combination of radiation and irradiated cell conditioned medium (ICCM). The surviving fractions after direct irradiation or exposure to ICCM were determined using a clonogenic assay. The results show that medium harvested from cultures receiving fractionated irradiation gave lower "recovery factors" than direct fractionated irradiation, where normal split-dose recovery occurred. The recovery factor is defined here as the surviving fraction of the cells receiving two doses (direct or ICCM) separated by an interval of 2 h divided by the surviving fraction of cells receiving the same dose in one exposure. After treatment with ICCM, the recovery factors were less than 1 over a range of total doses from 5 mGy-5 Gy. Varying the time between doses from 10 min to 180 min did not alter the effect of ICCM, suggesting that two exposures to ICCM are more toxic than one irrespective of the dose used to generate the response. In certain protocols using mixtures of direct irradiation and ICCM, it was possible to eliminate the bystander effect. If bystander factors are produced in vivo, then they may reduce the sparing effect of the dose fractionation.  相似文献   

5.
Much evidence now exists regarding radiation-induced bystander effects, but the mechanisms involved in the transduction of the signal are still unclear. The mitogen-activated protein kinase (MAPK) pathways have been linked to growth factor-mediated regulation of cellular events such as proliferation, senescence, differentiation and apoptosis. Activation of multiple MAPK pathways such as the ERK, JNK and p38 pathways have been shown to occur after exposure of cells to radiation and a variety of other toxic stresses. Previous studies have shown oxidative stress and calcium signaling to be important in radiation-induced bystander effects. The aim of the present study was to investigate MAPK signaling pathways in bystander cells exposed to irradiated cell conditioned medium (ICCM) and the role of oxidative metabolism and calcium signaling in the induction of bystander responses. Human keratinocytes (HPV-G cell line) were irradiated (0.005-5 Gy) using a cobalt-60 teletherapy unit. The medium was harvested 1 h postirradiation and transferred to recipient HPV-G cells. Phosphorylated forms of p38, JNK and ERK were studied by immunofluorescence 30 min-24 h after exposure to ICCM. Inhibitors of the ERK pathway (PD98059 and U0126), the JNK pathway (SP600125), and the p38 pathway (SB203580) were used to investigate whether bystander-induced cell death could be blocked. Cells were also incubated with ICCM in the presence of superoxide dismutase, catalase, EGTA, verapamil, nifedipine and thapsigargin to investigate whether bystander effects could be inhibited because of the known effects on calcium homeostasis. Activated forms of JNK and ERK proteins were observed after exposure to ICCM. Inhibition of the ERK pathway appeared to increase bystander-induced apoptosis, while inhibition of the JNK pathway appeared to decrease apoptosis. In addition, reactive oxygen species, such as superoxide and hydrogen peroxide, and calcium signaling were found to be important modulators of bystander responses. Further investigations of these signaling pathways may aid in the identification of novel therapeutic targets.  相似文献   

6.
The F1-progeny of BALB/c male mice chronically exposed to low-dose gamma-radiation (0.1; 0.25 and 0.5 Gy; dose rate 0.01 Gy/day) as well as the F1-progeny of females exposed to acute X-radiation (0.5; 1.0 and 2.0 Gy; dose rate 0.1 Gy/min) shown the significant elevated micronuclei frequencies in bone marrow erythrocytes, as compared to the F1-progeny of unirradiated males and females. The increase in the micronuclei frequency in the F1-progeny was determined by the dose of irradiation of parents. The values of elevated micronuclei frequency in the F1-progeny of chronically irradiated males and acutely irradiated females for a dose of 0.5 Gy were comparable. The micronuclei frequencies in the F1-progeny of irradiated females and males for this dose were in 1.5 and in 1.6 times higher than ones in the F1-progeny of unirradiated mice correspondingly. The results suggest the possibility of transfer of genome instability from irradiated parents to the somatic cells of the F1-progeny via non-lethally damaged germ cells of parents.  相似文献   

7.
A series of experiments to study the delayed effects of gamma-radiation exposure in different generations of the progenies of the Chinese hamster ovary CHO-K1 irradiated cells has been conducted. It has been shown that in the progenies of the cells irradiated with a dose of 1 Gy, the following effects are observed: in the 9-27 cell generations - increase in the genome damage, intracellular production of reactive oxygen species, apoptotic cells percentage and cell sensitivity to additional exposure (irradiation at a dose of 10 Gy); in the 30-42 cell generations - decrease of the studied parameters up to control values and increased resistance to additional exposure. It is assumed that the decrease of the studied parameters up to the control values in the 30-42 postirradiation generations of cells is caused by elimination of damaged cells or transition of genomic instability into a hidden (latent) condition.  相似文献   

8.
Genome variability and changes in immune homeostasis, induced in man in the course of long-term industrial contact with ionizing radiation (IR) sources were studied by using unique biomaterials stored in the Radiobiological Repository for Human Tissues at the Southern Urals Biophysics Institute, FMBA. The biomaterials, peripheral blood samples and blood DNA were obtained from the "Mayak" PA employers occupationally exposed to prolonged external gamma-radiation and/or internal alpha-radiation from incorporated 239Pu in a wide range of accumulated doses. A significant increase in the polymorphism of microsatellite-associated peripheral blood DNA repeats was revealed in a group of persons with accumulated doses of external gamma-radiation above 2.0 Gy, as well as in the descendants of parents with preconceptive doses of higher than 2.0 Gy. In persons whose parents had a preconceptive dose above 2.0 Gy, an increase in the gene p53 mutation rate was observed, and descendants of persons with dose of 3.0 Gy and higher showed mtDNA heteroplasmy, regardless of the sex of an exposed parent. Changes in the expression of membrane markers for the effector and regulatory T-lymphocytes depending on radiation type and dose load were determined. The growth factor level variations (TGF-beta1, EGF, HGF, FGF) in peripheral blood serum in persons exposed to radiation from gamma- or alpha-sources, allow us to consider them as biomarkers of radiation-induced disturbances in immune homeostasis. The concentration changes of TGF-beta1, apoptosis proteins (p53, TPA-cyk, sAPO-1/Fas), and the adhesion molecule sCD27 in the case of cardiovascular diseases in the serum of both irradiated and non-irradiated "Mayak" PA employers point to the information value of these immune response characteristics as specific biomarkers of cardiac disorders. It is proposed that the revealed changes in immune homeostasis and in the variability of somatic cell genome may provoke development of tumors and cardiovascular diseases in man in delayed periods after prolonged exposure to IR.  相似文献   

9.
Changes in the number of mitochondrial DNA (mtDNA) copies in the brain and spleen tissues of gamma-irradiated (3 Gy) mice were studied by comparative analysis of the long-extension PCR products of mtDNA (15.9 kb) and a fragment of the cluster nuclear beta-globin gene (8.7 kb) amplified simultaneously in one and the same test-tube within total DNA. The analysis showed that, compared to the nuclear beta-globin gene, an increase in mtDNA copy number (polyploidization) took place in the brain and spleen cells of mice exposed to gamma-radiation. This data led to the suggestion that the major mechanism for maintenance of the mitochondrial genome, which is constantly damaged by endogenous ROS and easily affected by ionizing radiation or other exogenous factors, is the induction of synthesis of new mtDNA copies on intact or little affected mtDNA templates because the repair systems in the mitochondria function at a low level of efficiency.  相似文献   

10.
The incidence of chromosome aberrations in bone marrow cells of femur did not exceed the spontaneous one in CBA mice exposed, during 70 days, to gamma-radiation at dose--rates of 33.7-35.8 nA/kg and cumulative dose of 2.75 Gy. A single acute exposure of intact animals to a dose of 2.98 Gy increased significantly the mutation level. Preirradiation with small doses increased the resistance of hereditary structures to sublethal radiation doses. Exogenous alpha-tocopherol (0.06 mg/20 g mass) protected the genetic apparatus of cells from total-body irradiation and was an additional factor decreasing the mutation level after acute exposure of mice at the background of long-term irradiation with small doses.  相似文献   

11.
Dilution of irradiated cell conditioned medium and the bystander effect   总被引:1,自引:0,他引:1  
While nontargeted and low-dose effects such as the bystander effect are now accepted, the mechanisms underlying the response have yet to be elucidated. It has been shown that the transfer of irradiated cell conditioned medium (ICCM) can kill cells that are not directly irradiated; however, to date the effect of ICCM concentration on cell killing has not been reported. The occurrence of a bystander effect was determined by measuring cell survival after exposure to various ICCM dilutions, using the colony-forming assay, in cells of six human cell lines with varied bystander responses and tumor/ p53 status. Autologous ICCM transfer for these cell lines induced a bystander effect as reported previously. ICCM from these cell lines was transferred to cells of a common reporter cell line (HPV-G) to investigate whether the lack of an induced bystander effect was due to their inability to generate or to respond to a bystander signal(s). ICCM from cells of four cell lines induced a bystander effect in HPV-G reporter cells, confirming that signal production is a critical factor. A saturation response was observed when ICCM was diluted. Survival was found to increase linearly until a plateau was reached and the bystander effect was abolished at 2x dilution. The effect of ICCM from the different cell lines reached a plateau at different dilutions, which were found to correlate with the cell line's radiosensitivity.  相似文献   

12.
Hemibody irradiation in multiple fractionated doses is frequently used for the treatment of various neoplastic disorders. It produces both acute and late effects on the skin and subcutaneous tissues that have profound implications in the healing of surgical wounds. Because of the crucial practical importance of hemibody radiation exposure associated with skin wounds, it is imperative to investigate the efficacy of cost-effective herbal products in the reconstruction of irradiated wounds. Therefore, the effect of pretreatment of curcumin was studied on the healing of excision wound in mice exposed to 2, 4, 6, or 8 Gy of hemibody gamma-radiation. A full-thickness skin wound was created by removing the skin flap of the dorsum of 8- to 10-week-old Swiss albino mice partially (lower half, below the rib cage) exposed to 2, 4, 6, or 8 Gy of gamma-radiation. The progression of wound contraction was monitored periodically by capturing video images of the wound, where the first image of each wound from different groups was obtained 1 day after wounding and that day was considered as day 0. Eight animals were used in each group at each exposure dose for wound contraction studies. Furthermore, the effect of curcumin on mean healing time after exposure of mice to 2, 4, 6, or 8Gy of hemibody gamma-radiation was also evaluated, where eight animals were used in each group at each exposure dose. Collagen, hexosamine, DNA, nitric oxide, and histologic profiles were also evaluated during the course of healing of excision wounds at days 4, 8, and 12 after irradiation treated or not with curcumin before exposure to 0 or 6 Gy of gamma-radiation. Six animals were used in each group at each interval for each biochemical parameter studied, except for histologic evaluations, where four animals were used in each group at each interval. Exposure of mice to different doses of gamma-radiation resulted in a dose-dependent delay in contraction and wound-healing time of excision wound, whereas curcumin pretreatment caused a significant elevation in the rate of wound contraction and a decrease in the mean wound-healing time. Treatment with curcumin before irradiation enhanced the synthesis of collagen, hexosamine, DNA, nitrite, and nitrate, and histologic assessment of wound biopsy specimens revealed improved collagen deposition and an increase in fibroblast and vascular densities. The authors' study demonstrates that curcumin pretreatment has a conducive effect on the irradiated wound and could be a substantial therapeutic strategy for ameliorating radiation-induced delay in wound repair in cases of radiation-induced skin injuries.  相似文献   

13.
To assess the lethal doses of gamma radiation and corresponding apoptotic response in new established human melanoma cell lines we exposed exponentially growing cultures to 8-100 Gy gamma radiation. The apoptosis and cell survival were determined by trypan blue exclusion, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) reaction, agarose gel electrophoresis, colony forming assay, and long-term survival assay. The maximal DNA fragmentation 3 days after irradiation was observed in cultures irradiated with 20 Gy (36.9% TUNEL positive cells). The cultures irradiated with 50 and 100 Gy contained 18.7% and 16.4% TUNEL positive cells, respectively. Cultures exposed to 8 and 20 Gy gamma radiation recovered by week 3-4. Lethally irradiated (50 and 100 Gy) cultures which contained less apoptotic cells by day 3 died by week 5. A detectable increase in melanoma cell pigmentation after irradiation was also observed. The survival of human melanoma cell cultures after exposure to gamma radiation does not correlate with the level of apoptotic cells by day 3. At high radiation doses (> 50 Gy) when the radiation induced cell pigmentation is not inhibited the processes of apoptotic DNA fragmentation might be preferentially inactivated.  相似文献   

14.
15.
It has been shown that premutagenic treatment with leukocytic interferon (10, 100 IU/ml) of human peripheral blood lymphocytes cultivated in vitro at the G1-stage of the mitotic cycle results in different cell response to gamma-radiation in doses of 0.5, 1, 2, 4 Gy according to chromosome aberration. The antimutagenic effect failed to be attained with the doses 0.5 and 1 Gy, being maximal at the dose 2 Gy. According to sister chromatid exchanges (SCE) cell pretreatment with interferon leads to a reduction in the effect of gamma-radiation at the dose 2 Gy to the level obtained in the cells after exposure to interferon. In experiments with 4-nitroquinoline-I-oxide, there was a significant decrease in the number of SCE in interferon-treated cells.  相似文献   

16.
The human fibroblasts were gamma-irradiated with low doses (0.07-0.21 Gy). After a short time interval (3 h), a study was made of the postirradiation viability of cells (by the trypan blue dye exclusion method); post-N-methyl-N'-nitro-nitrosoguanidine-DNA synthesis (by 3H-thymidine incorporation immediately after the mutagen treatment) and postirradiation induction of DNA single-strand breaks (by alkaline elution of cells lysed on the membrane filters). The preirradiation of cells with low doses of gamma-rays was shown to render the cells resistance to induction of DNA breaks by the following exposure to gamma-radiation. The survival rate increased; DNA synthesis was resistant to alkylation damage in these cells, as compared to nonirradiated cells.  相似文献   

17.
Radiation-induced bystander effects have been extensively studied at low doses, since evidence of bystander induced cell killing and other effects on unirradiated cells were found to be predominant at doses up to 0.5 Gy. Therefore, few studies have examined bystander effects induced by exposure to higher doses of radiation, such as spatially fractionated radiation (GRID) treatment. In the present study, we evaluate the ability of GRID treatment to induce changes in GRID adjacent (bystander) regions, in two different murine carcinoma cell lines following exposure to a single irradiation dose of 10 Gy. Murine SCK mammary carcinoma cells and SCCVII squamous carcinoma cells were irradiated using a brass collimator to create a GRID pattern of nine circular fields 12 mm in diameter with a center-to-center distance of 18 mm. Similar to the typical clinical implementation of GRID, this is approximately a 50:50 ratio of direct and bystander exposure. We also performed experiments by irradiating separate cultures and transferring the medium to unirradiated bystander cultures. Clonogenic survival was evaluated in both cell lines to determine the occurrence of radiation-induced bystander effects. For the purpose of our study, we have defined bystander cells as GRID adjacent cells that received approximately 1 Gy scatter dose or unirradiated cells receiving conditioned medium from irradiated cells. We observed significant bystander killing of cells adjacent to the GRID irradiated regions compared to sham treated controls. We also observed bystander killing of SCK and SCCVII cells cultured in conditioned medium obtained from cells irradiated with 10 Gy. Therefore, our results confirm the occurrence of bystander effects following exposure to a high-dose of radiation and suggest that cell-to-cell contact is not required for these effects. In addition, the gene expression profile for DNA damage and cellular stress response signaling in SCCVII cells after GRID exposure was studied. The occurrence of GRID-induced bystander gene expression changes in significant numbers of DNA damage and cellular stress response signaling genes, providing molecular evidence for possible mechanisms of bystander cell killing.  相似文献   

18.
The backs of female ICR mice were irradiated with beta rays from 90Sr-90Y three times a week throughout life. Previously we observed 100% tumor incidence at five different dose levels ranging from 1.5 to 11.8 Gy per exposure, but no tumor on repeated irradiation with 1.35 Gy for 300 days (Radiat. Res. 115, 488, 1988). In the present study, delay of tumor development was again seen at a dose of 1.5 Gy per exposure, with further delay at 1.0 Gy. The final tumor incidence was 100% with these two doses. At 0.75 Gy per exposure, no tumor appeared within 790 days after the start of irradiation, but one osteosarcoma and one squamous cell carcinoma did finally appear. These findings indicate a threshold-like response of tumor induction in this repeated irradiation system and further suggest that the apparent threshold may be somewhat less than 0.75 Gy per exposure.  相似文献   

19.
For study of the effects of whole-body gamma-radiation (1 and 4 Gy) on the response of the body to administration of vaccines and virulent strains of tularemia 206 outbred white mice were used. The results of the study shown that the administration of attenuated bacterial cells in 5 days after exposure to radiation (1 and 4 Gy) caused more severe post-radiation effects and the increase in the number of died animals. The severity of the disease was less if mice were vaccinated in 26 days after irradiation (4 Gy). The treatment of tularemia in irradiated mice twith Riphampicin (daily peroral administration, 5 mg/mouse, duration of treatment--7 days) administered in 4 hours after infection was effective and caused high survival of affected mice. The results show effectiveness of the riphampicin treatment of tularemia in the animals exposed to sublethal dose of radiation.  相似文献   

20.
The effect of gamma-radiation (3Gy) on slowly proliferating liver tissue of male rats and their progeny was investigated with respect to induction and duration of latent damage. The irradiation caused latent cytogenetic damage in the liver in irradiated males of the F(0) generation, which manifested itself in different ways during proliferation of hepatocytes induced by partial hepatectomy: a reduced proliferating activity, a higher frequency of chromosomal aberrations and a higher proportion of cells with apoptotic DNA fragments were observed, compared with non-irradiated rats. In the progeny of irradiated males (F(1) and F(2) generation), the latent genome damage manifested itself during regeneration of the liver after partial hepatectomy by similar, but less pronounced changes compared with those seen in irradiated males of the parental generation. This finding gave evidence of the transfer of part of the radiation-induced genome damage from parents to their offspring. Irradiation of F(1) and F(2) progeny of irradiated males (their total radiation load being 3 + 3 and 3 + 0 + 3 Gy, respectively) caused less change as irradiation of progeny of non-irradiated control males (their total radiation load being 0 + 3 and 0 + 0 + 3 Gy, respectively).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号