首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deletion between directly repeated DNA sequences in bacteriophage T7-infected Escherichia coli was examined. The phage ligase gene was interrupted by insertion of synthetic DNA designed so that the inserts were bracketed by 10-bp direct repeats. Deletion between the direct repeats eliminated the insert and restored the ability of the phage to make its own ligase. The deletion frequency of inserts of 85 bp or less was of the order of 10(-6) deletions per replication. The deletion frequency dropped sharply in the range between 85 and 94 bp and then decreased at a much lower rate over the range from 94 to 900 bp. To see whether a deletion was predominantly caused by intermolecular recombination between the leftmost direct repeat on one chromosome and the rightmost direct repeat on a distinct chromosome, genetic markers were introduced to the left and right of the insert in the ligase gene. Short deletions of 29 bp and longer deletions of approximately 350 bp were examined in this way. Phage which underwent deletion between the direct repeats had the same frequency of recombination between the left and right flanking markers as was found in controls in which no deletion events took place. These data argue against intermolecular recombination between direct repeats as a major factor in deletion in T7-infected E. coli.  相似文献   

2.
D Kong  W Masker 《Journal of bacteriology》1994,176(19):5904-5911
An in vitro system based on extracts of Escherichia coli infected with bacteriophage T7 was used to study genetic deletions between directly repeated sequences. The frequency of deletion was highest under conditions in which the DNA was actively replicating. Deletion frequency increased markedly with the length of the direct repeat both in vitro and in vivo. When a T7 gene was interrupted by 93 bp of nonsense sequence flanked by 20-bp direct repeats, the region between the repeats was deleted in about 1 out of every 1,600 genomes during each round of replication. Very similar values were found for deletion frequency in vivo and in vitro. The deletion frequency was essentially unaffected by a recA mutation in the host. When a double-strand break was placed between the repeats, repair of this strand break was often accompanied by the deletion of the DNA between the direct repeats, suggesting that break rejoining could contribute to deletion during in vitro DNA replication.  相似文献   

3.
Palindromy and the Location of Deletion Endpoints in Escherichia Coli   总被引:13,自引:3,他引:10  
K. Weston-Hafer  D. E. Berg 《Genetics》1989,121(4):651-658
The contributions of direct and inverted repeats to deletion formation were studied by characterizing Ampr revertants of plasmids with a series of insertion mutations at a specific site in the pBR322 ampicillin resistance (amp) gene. The inserts at this site are palindromic, variable in length, and bracketed by 9- or 10-bp direct repeats of amp sequence. There is an additional direct repeat composed of 4 bp within the insert and 4 bp of adjoining amp sequence. DNA sequencing and colony hybridization of Ampr revertants showed that they contained either the parental amp sequence, implying deletion endpoints in the flanking 9- or 10-bp repeats, or a specific 1-bp substitution, implying endpoints in the 4-bp repeats. Although generally direct repeats seem to be used as deletion endpoints with a frequency proportional to their lengths, we found that with uninterrupted palindromes longer than 32 bp, the majority of deletions ended in the 4 bp, not the 9- or 10-bp repeats. This preferential use of the shorter direct repeats associated with palindromes is interpreted according to a DNA synthesis-error model in which hairpin structures formed by intrastrand pairing foster the slippage of nascent strands during DNA synthesis.  相似文献   

4.
Summary DNA sequence analysis of genetic deletions in bacteriophage T7 has shown that these chromosomal rearrangements frequently occur between directly repeated DNA sequences. To study this type of spontaneous deletion in more quantitative detail synthetic fragments of DNA, made by hybridizing two complementary oligonucleotides, were introduced into the non-essential T7 gene 1.3 which codes for T7 DNA ligase. This insert blocked synthesis of functional ligase and made the phage that carried an insert unable to form plaques on a host strain deficient in bacterial ligase. The sequence of the insert was designed so that after it is put into the T7 genome the insert is bracketed by direct repeats. Perfect deletion of the insert between the directly repeated sequences results in a wild-type phage. It was found that these deletion events are highly sensitive to the length of the direct repeats at their ends. In the case of 5 bp direct repeats excision from the genome occurred at a frequency of less than 10−10, while this value for an almost identical insert bracketed by 10 bp direct repeats was approximately 10−6. The deletion events were independent of a hostrecA mutation.  相似文献   

5.
Limits to the role of palindromy in deletion formation.   总被引:6,自引:0,他引:6       下载免费PDF全文
We tested the effect of palindromy on deletion formation. This involved a study of reversion of insertion mutations in the pBR322 amp gene at a site where deletions end either in 9-bp direct repeats or in adjoining 4-bp direct repeats. Inserts of palindromic DNAs ranging from 10 to more than 26 bp and related nonpalindromic DNAs were compared. The frequency of deletions (selected as Ampr revertants) was stimulated by palindromy only at lengths greater than 26 bp. The 4-bp direct repeats, one component of which is located in the palindromic insert, were used preferentially as deletion endpoints with palindromes of at least 18 bp but not of 16 or 10 bp. We interpret these results with a model of slippage during DNA replication. Because deletion frequency and deletion endpoint location depend differently on palindrome length, we propose that different factors commit a molecule to undergo deletion and determine exactly where deletion endpoints will be.  相似文献   

6.
T. Q. Trinh  R. R. Sinden 《Genetics》1993,134(2):409-422
We describe a system to measure the frequency of both deletions and duplications between direct repeats. Short 17- and 18-bp palindromic and nonpalindromic DNA sequences were cloned into the EcoRI site within the chloramphenicol acetyltransferase gene of plasmids pBR325 and pJT7. This creates an insert between direct repeated EcoRI sites and results in a chloramphenicol-sensitive phenotype. Selection for chloramphenicol resistance was utilized to select chloramphenicol resistant revertants that included those with precise deletion of the insert from plasmid pBR325 and duplication of the insert in plasmid pJT7. The frequency of deletion or duplication varied more than 500-fold depending on the sequence of the short sequence inserted into the EcoRI site. For the nonpalindromic inserts, multiple internal direct repeats and the length of the direct repeats appear to influence the frequency of deletion. Certain palindromic DNA sequences with the potential to form DNA hairpin structures that might stabilize the misalignment of direct repeats had a high frequency of deletion. Other DNA sequences with the potential to form structures that might destabilize misalignment of direct repeats had a very low frequency of deletion. Duplication mutations occurred at the highest frequency when the DNA between the direct repeats contained no direct or inverted repeats. The presence of inverted repeats dramatically reduced the frequency of duplications. The results support the slippage-misalignment model, suggesting that misalignment occurring during DNA replication leads to deletion and duplication mutations. The results also support the idea that the formation of DNA secondary structures during DNA replication can facilitate and direct specific mutagenic events.  相似文献   

7.
We have studied the deletion of inverted repeats cloned into the EcoRI site within the CAT gene of plasmid pBR325. A cloned inverted repeat constitutes a palindrome that includes both EcoRI sites flanking the insert. In addition, the two EcoRI sites represent direct repeats flanking a region of palindromic symmetry. A current model for deletion between direct repeats involves the formation of DNA secondary structure which may stabilize the misalignment between the direct repeats during DNA replication. Our results are consistent with this model. We have analyzed deletion frequencies for several series of inverted repeats, ranging from 42 to 106 bp, that were designed to form cruciforms at low temperatures and at low superhelical densities. We demonstrate that length, thermal stability of base pairing in the hairpin stem, and ease of cruciform formation affect the frequency of deletion. In general, longer palindromes are less stable than shorter ones. The deletion frequency may be dependent on the thermal stability of base pairing involving approximately 16-20 bp from the base of the hairpin stem. The formation of cruciforms in vivo leads to a significant increase in the deletion frequency. A kinetic model is presented to describe the relationship between the physical-chemical properties of DNA structure and the deletion of inverted repeats in living cells.  相似文献   

8.
An in vitro DNA replication system based on extracts prepared from Escherichia coli cells infected with bacteriophage T7 was used to study deletion associated with the repair of double-strand breaks. The gene for T7 ligase was interrupted by a DNA insert which included 17-bp direct repeats. Deletion between the repeats restored the reading frame of the gene, and these DNA molecules could be detected by their ability to give rise to ligase-positive phage after in vitro packaging. T7 genomes that had a pre-existing double-strand break located between the direct repeats were incubated together with intact genomes which had the same direct repeats. Genetic markers placed on either side of the insert in the ligase gene allowed identification of the source of DNA molecules that underwent deletion between the direct repeats. This allowed an assessment of the participation of the molecules with strand breaks in the deletion process, under conditions where any mechanism could contribute to deletion. Approximately three-quarters of the T7 molecules that had lost the region between the direct repeats contained one or both of the partial genomes originally introduced into the reactions. About 50% of the genomes which had undergone deletion had recombined markers between the partial and intact genomes. The data demonstrate that double-strand breaks substantially enhance the contribution of intermolecular recombination to deletion. Received: 19 November 1996 / Accepted: 26 February 1997  相似文献   

9.
To study recombination between short homologous sequences in Escherichia coli we constructed plasmids composed of the pBR322 replicon, M13 replication origin and a recombination unit inserted within and inactivating a gene encoding chloramphenicol resistance. The unit was composed of short direct repeats (9, 18 or 27 bp) which flanked inverted repeats (0, 8 or 308 bp) and a gene encoding kanamycin resistance. Recombination between direct repeats restored a functional chloramphenicol resistance gene, and could be detected by a simple phenotype test. The plasmids replicated in a double-stranded form, using the pBR322 replicon, and generated single-stranded DNA when the M13 replication origin was activated. The frequency of chloramphenicol-resistant cells was low (10(-8)-10(-4] when no single-stranded DNA was synthesized but increased greatly (to 100%) after induction of single-stranded DNA synthesis. Recombination between 9 bp direct repeats entailed no transfer of DNA from parental to recombinant plasmids, whereas recombination between 18 or 27 bp repeats entailed massive transfer. The presence or length of inverted repeats did not alter the pattern of DNA transfer. From these results we propose that direct repeats of 9 bp recombine by a copy choice process, while those greater than or equal to 18 bp can recombine by a breakage-reunion process. Genome rearrangements detected in many organisms often occur by recombination between sequences less than 18 bp, which suggests that they may result from copy choice recombination.  相似文献   

10.
By inserting palindromes of varying length and sequence into a non-essential region of the bacteriophage phi X174 genome we have investigated the effect of palindrome size and sequence on their genetic stability. Multimers of increasing size of the EcoRI linker CCGAATTCGG (E), the BamHI linker CCGGATCCGG (B) or mixtures of both (E, B) were inserted into the PvuII site of a previously constructed bacteriophage strain phi X174 J-F ins6. The largest inserts that could be maintained in the genome without significant loss of genetic stability were 2B, 4E, and 4(E, B), respectively. Polymers exceeding this size could be inserted but resulted in rapid and precise deletion from the phage genome, whereby nB was more unstable than nE, and nE was more unstable than n(E, B). Analysis of the resulting deletion mutants provided evidence for two different types of deletions. The more frequent deletion arose from either type palindrome and removed nucleotides in blocks of ten base-pairs (one linker unit), but only from the palindromic sequence, and always left at least an 18 base-pair long palindrome (one linker plus 8 neighboring base-pairs) behind. The less frequently occurring deletions arose only from nB type palindromes, removing the complete palindromic sequence plus adjacent nucleotides. At least the first type of deletion occurred in the absence of recA activity. Our results show a correlation between the sequence, as well as size, and the genetic stability of palindromes, i.e. sequences that could decrease the stability of a cruciform increased their genetic stability. This supports the theory that palindrome deletion occurs via extrusion of the palindrome into a cruciform or cruciform-like structure.  相似文献   

11.
Deletion formation in bacteriophage T4   总被引:24,自引:0,他引:24  
We have manipulated the dispensable region of the rIIB gene of bacteriophage T4 in order to study the generation of deletions involving direct repeats. We show that recombination between different parental chromosomes is one source of the deletions we have studied. We have also investigated the effects of structure, base composition and distance on deletion formation. We demonstrate that the potential to form structure in single-stranded DNA has variable effects on the frequency of deletion formation and conclude that, in some cases, slipped mispairing during DNA synthesis can make a substantial contribution to deletion frequencies. The G + C richness of the direct repeats involved in deletion formation is an important parameter of the frequency of deletion formation. We have confirmed that increasing the distance between direct repeats decreases deletion frequency.  相似文献   

12.
Structure and distribution of inverted repeats (palindromes)   总被引:1,自引:0,他引:1  
The size and distribution of renatured inverted repeats (palindromes) in D. melanogaster DNA were studied by electron microscopy (EM). The results of these studies differ from the previously published observations regarding the number, distribution and the size of inverted repeats (ir) present in DNA. -1. In contrast to the previous published observation almost all (96%) of the ir were found in crowded clusters. The DNA strands with clustered palindromes contained 2-21 palindromes (4-42 ir), with an average of 7.25 palindromes (14.5 ir) per strand. No correlation could be found between the length of the DNA strands and the number of ir per strand. -2, Also contrary to some previously published results, most (80%) of the ir formed on renaturation unlooped palindromes and these were always clustered. Looped palindromes (hairpins, formed by renaturation of ir separated by a non-homologous sequence long enough to be seen in EM as single-stranded loop) were found 1-2 per DNA strand, as part of clusters or as solitary palindromes in a DNA strand. The average spacing length (inside clusters) between centers of all palindromes was 2.349 kb, and between centers of looped palindromes 7.6 kb. - 3. The length of the ir was found to be smaller than documented in most of the previously published results. The majority, 80-90%, of the ir found in the unlooped and looped palindromes, respectively, belonged to one main-size class with a range of 30-210 bp and an average length of 100 bp, but longer ir were also observed. The average length of the ir in unlooped palindromes was 124 bp, in looped 244 bp, and the total average was 148 bp - 4. It was calculated that there are about 30,000 palindromes (60,000 ir) in the D, melanogaster genome, of which about 24,000 are unlooped and 6,000 looped, with the spacing between centers of all palindromes averaging about 4.4 kb in length.  相似文献   

13.
The frequencies of deletion of short sequences (mutation inserts) inserted into the chloramphenicol acetyl-transferase (CAT) gene were measured for pBR325 and pBR523, in which the orientation of the CAT gene was reversed, in Escherichia coli. Reversal of the CAT gene changes the relationship between the transcribed strand and the leading and lagging strands of the DNA replication fork in pBR325-based plasmids. Deletion of these mutation inserts may be mediated by slipped misalignment during DNA replication. Symmetrical sequences, in which the same potential DNA structural misalignment can form in both the leading and lagging strands, exhibited an approximately twofold difference in the deletion frequencies upon reversal of the CAT gene. Sequences that contained an inverted repeat that was asymmetric with respect to flanking direct repeats were designed. With asymmetric mutation inserts, different misaligned structural intermediates could form in the leading and lagging strands, depending on the orientation of the insert and/or of the CAT gene. When slippage could be stabilized by a hairpin in the lagging strand, thereby forming a three-way junction, deletion occurred by up to 50-fold more frequently than when this structure formed in the leading strand. These results support the model that slipped misalignment involving DNA secondary structure occurs preferentially in the lagging strand during DNA replication.  相似文献   

14.
Small direct repeats, which are frequent in all genomes, are a potential source of genome instability. To study the occurrence and genetic control of repeat-associated deletions, we developed a system in the yeast Saccharomyces cerevisiae that was based on small direct repeats separated by either random sequences or inverted repeats. Deletions were examined in the LYS2 gene, using a set of 31- to 156-bp inserts that included inserts with no apparent potential for secondary structure as well as two quasipalindromes. All inserts were flanked by 6- to 9-bp direct repeats of LYS2 sequence, providing an opportunity for Lys+ reversion via precise excision. Reversions could arise by extended deletions involving either direct repeats or random sequences and by -1-or +2-bp frameshift mutations. The deletion breakpoints were always associated with short (3- to 9-bp) perfect or imperfect direct repeats. Compared with the POL+ strain, deletions between small direct repeats were increased as much as 100-fold, and the spectrum was changed in a temperature-sensitive DNA polymerase delta pol3-t mutant, suggesting a role for replication. The type of deletion depended on orientation relative to the origin of replication. On the basis of these results, we propose (i) that extended deletions between small repeats arise by replication slippage and (ii) that the deletions occur primarily in either the leading or lagging strand. The RAD50 and RAD52 genes, which are required for the recombinational repair of many kinds of DNA double-strand breaks, appeared to be required also for the production of up to 90% of the deletions arising between separated repeats in the pol3-t mutant, suggesting a newly identified role for these genes in genome stability and possibly replication.  相似文献   

15.
A system of transposon mutagenesis for bacteriophage T4   总被引:1,自引:0,他引:1  
We have developed a system of transposon mutagenesis for bacteriophage T4. The transposon is a plasmid derivative of Tn5 which contains the essential T4 gene 24, permitting a direct selection for transposition events into a gene 24-deleted phage. The transposition occurred at a frequency of only 10(-7) per progeny phage, even though a dam- host was used to increase transposition frequency. Phage strains with a transposon insert were distinguished from most pseudorevertants of the gene 24 deletion by plaque hybridization using a transposon-specific probe. Mapping analysis showed that the transposon inserts into a large number of sites in the T4 genome, probably with a preference for certain regions. The transposon insertions in four strains were analysed by DNA sequencing using primers that hybridize to each end of the transposon and read out into the T4 genome. In each case, a 9 bp T4 target sequence had been duplicated and the insertions had occurred exactly at the IS50 ends of the transposon, demonstrating that bona fide transposition had occurred. Finally, the transposon insert strains were screened on the TabG Escherichia coli strain, which inhibits the growth of T4 motA mutants, and a motA transposon insert strain was found.  相似文献   

16.
A method for cloning and sequencing long palindromic DNA junctions   总被引:1,自引:0,他引:1  
  相似文献   

17.
Naomi Biezunski 《Chromosoma》1981,84(1):111-129
The size and distribution of renatured inverted repeats (palindromes) in Mus musculus DNA were examined by electron microscopy (EM). The majority (85%) of palindromes were found to be clustered in about one half of the DNA strands. The rest of the DNA strands were seen with a solitary looped structure. — The unlooped palindromes constituted 53% of all palindromes and were always clustered. There was a significant reduction in the number of unlooped palindromes in comparison to D. melanogaster DNA (Biezunski, 1981) and as a result the palindrome clusters were smaller and contained 2–8 palindromes [4–16 inverted repeats (ir)] per DNA strand. The looped palindromes had a wide and regular distribution with spacing lengths similar to those found in D. melanogaster DNA, and showed some periodicity. The average spacing between centers of all palindromes (inside a cluster) was 4.325 kb, and between centers of looped palindromes 8.544 kb. — The lengths of the ir of unlooped and looped palindromes were grouped (similar to D. melanogaster DNA) in one size-class with a range of 30–240 bp and an average length of 130 bp. Longer ir were also observed and the average length of ir in unlooped palindromes was 186 bp, in looped 588 bp, and the total average length was 375 bp. — It was calculated that there are about 224,000–320,000 palindromes (ir pairs) in the mouse genome, with the spacing between centers of all palindromes about 13-9 kb in length. — In high molecular weight mouse DNA, complex looped structures composed of rows of 5–8 looped palindromes one on top the other, formed by renaturation of multiple ir, were observed. It is suggested, that clustered repetitive sequences, in direct and inverted orientation, might be of one family and homologous to one another, and be able to reassociate, in vitro and in vivo, into structures of different forms, which could function as binding sites for various regulatory proteins during mouse development.  相似文献   

18.
19.
Rearrangements of T-DNAs during genetic transformation of plants can result in the insertion of transgenes in the form of repeats into the host genome and frequently lead to loss of transgene expression. To obtain insight into the mechanism of repeat formation we screened 45 transgenic lines of aspen and hybrid aspen transformed with six different gene constructs. The frequency of T-DNA repeat formation among randomly screened transgenic lines was found to be about 21%. In ten transgenic lines direct repeats were detected. An inverted repeat was found in one other transgenic line. Sequencing of the junctions between the T-DNA inserts revealed identical residual right-border repeat sequences at the repeat junctions in all ten transgenic lines that had direct repeats. Formation of "precise" junctions based on short regions of sequence similarity between recombining strands was observed in three transgenic lines transformed with the same plasmid. Additional DNA sequences termed filler DNAs were found to be inserted between the T-DNA repeats at eight junctions where there was no similarity between recombining ends. The length of the filler DNAs varied from 4 to almost 300 bp. Small filler DNAs--a few base pairs long--were in most cases copied from T-DNA near the break points. The large filler sequences of about 300 bp in two transgenic lines were found to be of host plant origin, suggesting that transgene repeat formation occurred as a result of the simultaneous invasion of a receptive site in the host genome by two independent T-DNA strands. On the basis of the results obtained, and in the light of previous reports on T-DNA/plant DNA junctions in aspen and other crop plants, a mechanistic model for transgene rearrangement and filler formation is suggested.  相似文献   

20.
The specificity of deletion formation was studied using tests involving reversion of palindromic insertion mutations. Insertions of a Tn5-related transposon at 13 sites in the ampicillin-resistance (amp) gene of plasmid pBR322 were shortened to a nested set of perfect palindromes, 22, 32 and 90 bp long. We monitored frequencies of reversion to Ampr, which is the result of deletion of the palindrome plus one copy of the flanking 9 bp direct repeats (which had been formed by transposition). Revertant frequencies were found to depend on the location and the sequence of the palindromic insert. Changing a 45-kb interrupted palindrome to a 22-bp perfect palindrome stimulated deletion formation by factors of from fourfold to 545-fold among the 13 sites, while elongation of the perfect palindrome from 22 to 90 bp stimulated deletion formation by factors of from eight- to 18,000-fold. We conclude that deletion formation is strongly affected by subtle features of DNA sequence or conformation, both inside and outside the deleted segment, and that these effects may reflect specific interactions of DNA processing proteins with template DNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号