首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the influence of positive end-expiratory pressure (PEEP) on hemodynamic measurements we examined the transmission of airway pressure to the pleural space during varying conditions of lung and chest wall compliance. Eight ventilated anesthetized dogs were studied in the supine position with the chest closed. Increases in pleural pressure were similar for both small and large PEEP increments (5-20 cmH2O), whether measured in the esophagus (Pes) or in the juxtacardiac space by a wafer sensor (Pj). Increments in Pj exceeded the increments in Pes at all levels of PEEP and under each condition of altered lung and chest wall compliance. When chest wall compliance was reduced by thoracic and abdominal binding, the fraction of PEEP sensed in the pleural space increased as theoretically predicted. Acute edematous lung injury produced by oleic acid (OA) did not alter the deflation limb pressure-volume characteristics of the lung, provided that end-inspiratory volume was adequate. With the chest and abdomen restricted OA was associated with less than normal transmission of airway pressure to the pleural space, most likely because the end-inspiratory volume required to restore normal deflation characteristics was not attained. Together these results indicate that the influence of acute edematous lung injury on the transmission of airway pressure to the pleural space depends importantly on the peak volume achieved during inspiration.  相似文献   

2.
Pleural space width was measured by four morphological approaches using either frozen hydrated or freeze-substituted blocks of chest wall and lung. Anesthetized sheep were held in the lateral (n = 2), sternal recumbent (n = 2), or vertical (head-up; n = 2) position for 30 min. The ribs and intercostal muscles were excised along a 20-cm vertical distance of the chest wall region, which was sprayed with liquid Freon 22, cooled with liquid nitrogen, to facilitate the fastest possible freezing of the visceral and parietal pleura. We measured pleural space width in frozen hydrated blocks by reflected-light and low-temperature scanning electron microscopy and in freeze-substituted, fixed, and embedded tissue blocks by light and transmission electron microscopy. We combined the data from the two groups of sheep held sternally recumbent and vertical because the results were comparable. The average arithmetic mean data for pleural space width determined by reflected-light analysis for samples near the top (18.5 microns) and bottom (20.3 microns) of the chest, separated by 15 cm of lung height, varied inversely with lung height (n = 4; P less than 0.009). The average harmonic mean data demonstrated a similar gravity-dependent gradient (17.3 and 18.8 microns, respectively; P less than 0.02). Therefore a slight vertical gradient of approximately -0.10 micron/cm of lung height was found for costal pleural space width. Pleural space width in the most dependent recesses, such as the costodiaphragmatic recess, reached 1-2 mm. We never found any contacts between the visceral and parietal pleura with either of the frozen hydrated preparations. No points of mesothelial cell contact were revealed in the light- and transmission electron microscopic views of the freeze-substituted tissue, despite an apparent narrower pleural space associated with the tissue-processing steps. We conclude that the pleural space has a slightly nonuniform width, contacts if they occur must be very infrequent, and pleural liquid clearance is probably facilitated by liquid accumulation in dependent regions where lymphatic pathways exist.  相似文献   

3.
We recently showed that we can selectively and safely deplete most (average 85%) of the pulmonary intravascular macrophages in sheep by intravenously infusing liposomes containing dichloromethylene bisphosphonate. After a 1-h stable baseline, we made a 6-h comparison after a 30-min intravenous endotoxin infusion (1 microg/kg) between six anesthetized control lambs and six anesthetized lambs in which the intravascular macrophages had been depleted 24 h previously. Three of the control lambs had been macrophage depleted and allowed to recover their intravascular macrophage population for >/=2 wk. After depletion, both the early and late pulmonary arterial pressure rises were dramatically attenuated. Our main interest, however, was in the acute lung microvascular injury response. The early and late rises in lung lymph flow and the increase in lung lymph protein clearance (lymph flow x lymph-to-plasma protein concentration ratio) were >90% attenuated. We conclude the pulmonary intravascular macrophages are responsible for most of the endotoxin-induced pulmonary hypertension and increased lung microvascular leakiness in sheep, although the unavoidable injury of other intravascular macrophages by the depletion regime may also contribute something.  相似文献   

4.
The role of the lung epithelium in lung fluid balance was studied by ventilating anesthetized sheep with an aerosol of 20 mg of elastase from Pseudomonas aeruginosa (Ps. elastase) to increase lung epithelial permeability without affecting lung endothelial permeability or lung vascular pressures. Ps. elastase had no effect on the lung vascular pressures, the alveolar-arterial PO2 gradient (A-aPO2), the flow or protein concentration of the lung lymph, or the postmortem water volume of the lungs. The morphological alveolar flooding score in these sheep was 2.5 times the control level, but this was only marginally significant. Elevation of the left atrial pressure by 20 cmH2O alone increased the postmortem lung water volume but had no effect on A-aPO2, the alveolar flooding score, or the lung epithelial permeability assessed by the clearance of 99mTc-labeled human serum albumin. Addition of aerosolized Ps. elastase to these sheep had no effect on the total lung water volume, but it caused a redistribution of water into the air spaces, as evidenced by significant increases in the alveolar flooding score and A-aPO2 (P less than 0.01). Elevation of the left atrial pressure by 40 cmH2O without elastase caused the same response as elevation of the left atrial pressure by 20 cmH2O with elastase, except the higher pressure caused a greater increase in the total lung water volume. We conclude that alteration of the integrity of the lung epithelium with aerosolized Ps. elastase causes a redistribution of lung water into the alveoli without affecting the total lung water volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
6.
We compared the ability of three aerosolized tracers to discriminate among control, lung inflation with a positive end expired pressure of 10 cmH2O, lung vascular hypertension and edema without lung injury, and lung edema with lung injury due to intravenous oleic acid. The tracers were 99mTc-diethylenetriaminepentaacetate (99mTc-DTPA, mol wt 492), 99mTc-human serum albumin (99mTc-ALB, mol wt 69,000), and 99mTc-aggregated albumin (99mTc-AGG ALB, mol wt 383,000). 99mTc-DTPA clearance measurements were not able to discriminate lung injury from lung inflation. The 99mTc-AGG ALB clearance rate was unchanged by lung inflation and increased slightly with lung injury. The 99mTc-ALB clearance rate (0.06 +/- 0.02%/min) was unchanged by lung inflation (0.09 +/- 0.02%/min, P greater than 0.05) or 4 h of hypertension without injury (0.09 +/- 0.04%/min, P greater than 0.05). Deposition of 99mTc-ALB within 15 min of the administration of the oleic acid increased the clearance rate to 0.19 +/- 0.06%/min, which correlated well with the postmortem lung water volume (r = 0.92, P less than 0.01). This did not occur when there was a 60-min delay in the deposition of 99mTc-ALB. We conclude that 99mTc-ALB is the best indicator for studying the effects of lung epithelial injury on protein and fluid transport into and out of the air spaces of the lungs in a minimally invasive manner.  相似文献   

7.
We examined the effects of varying dosages of thrombin on lung fluid balance in halothane-anesthetized sheep prepared with lung lymph fistulas. A 15-min iv infusion of sublethal doses of alpha-thrombin (2.5 clotting units/micrograms), the native enzyme, at 0.6 or 1.1 nmol active enzyme/kg body wt increased the mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) two- to threefold. Neither parameter increased in a dose-dependent manner. Platelet counts decreased 50% with both dosages. Leukocyte counts decreased 35 and 75% from base line in the low- and high-dosage groups, respectively, and reached comparable levels of 50% below base line at 60-min postinfusion in both groups. Plasma fibrinogen concentrations decreased in a dose-dependent manner preceding dose-dependent increases in pulmonary lymph flow (Qlym) and lymph protein clearance (Clym). Fibrin deposition in pulmonary vessels was greater at 30 than at 180 min postinfusion. In contrast, a 15-min iv infusion of gamma-thrombin (0.002 clotting units/micrograms), which lacks the fibrinogen recognition site, at 1.2 nmol active enzyme/kg produced no significant increases in PVR, Ppa, Qlym, or Clym. The fibrinogen concentration did not change significantly, whereas platelet and leukocyte counts decreased 25% within 15 min. Fibrin microthrombi were less prominent in pulmonary vessels. Fibrin deposition associated with intravascular coagulation may be an important factor mediating thrombin-induced increases in pulmonary transvascular fluid and protein exchange.  相似文献   

8.
Studies of pleural clearance of calcium tungstate particles were made in the dog. By using scanning electron microscopy and elemental microanalysis, we show that mesothelial cells of the visceral leaflet of the pleura are also involved in the clearance of particles present in the pleural space. The histological study of lung parenchyma shows many macrophages loaded with tungsten particles, and we conclude that this way may be an important pathway for the transmission of pathologic processes from the pleural space to the lung.  相似文献   

9.
10.
Positive end-expiratory pressure (PEEP) increases central venous pressure, which in turn impedes return of systemic and pulmonary lymph, thereby favoring formation of pulmonary edema with increased microvascular pressure. In these experiments we examined the effect of thoracic duct drainage on pulmonary edema and hydrothorax associated with PEEP and increased left atrial pressure in unanesthetized sheep. The sheep were connected via a tracheostomy to a ventilator that supplied 20 Torr PEEP. By inflation of a previously inserted intracardiac balloon, left atrial pressure was increased to 35 mmHg for 3 h. Pulmonary arterial, systemic arterial, and central venous pressure as well as thoracic duct lymph flow rate were continuously monitored, and the findings were compared with those in sheep without thoracic duct cannulation (controls). At the end of the experiment we determined the severity of pulmonary edema and the volume of pleural effusion. With PEEP and left atrial balloon insufflation, central venous and pulmonary arterial pressure were increased approximately threefold (P less than 0.05). In sheep with a thoracic duct fistula, pulmonary edema was less (extra-vascular fluid-to-blood-free dry weight ratio 4.8 +/- 1.0 vs. 6.1 +/- 1.0; P less than 0.05), and the volume of pleural effusion was reduced (2.0 +/- 2.9 vs. 11.3 +/- 9.6 ml; P less than 0.05). Our data signify that, in the presence of increased pulmonary microvascular pressure and PEEP, thoracic duct drainage reduces pulmonary edema and hydrothorax.  相似文献   

11.
To compare the effectiveness of different embolizing agents in reducing or redistributing bronchial arterial blood flow, we measured systemic blood flow to the right lung and trachea in anesthetized sheep by use of the radioactive microsphere method before and 1 h after occlusion of the bronchoesophageal artery (BEA) as follows: injection of 4 ml ethanol (ETOH) into BEA (group 1, n = 5), injection of approximately 0.5 g polyvinyl alcohol particles (PVA) into BEA (group 2, n = 5), or ligation of BEA (group 3, n = 5). After occlusion, angiography showed complete obstruction of the bronchial vessels. There were no changes in tracheal blood flow in any of the groups. Injection of ETOH produced a 75 +/- 14% (SD) reduction in flow to the middle lobe (P less than 0.02) and a 75 +/- 13% reduction to the caudal lobe (P less than 0.01), whereas injection of PVA produced a smaller reduction in flow to these two lobes (41 +/- 66 and 51 +/- 54%, respectively). After BEA ligation there was a 52 +/- 29% reduction in flow to the middle lobe and a 53 +/- 38% reduction to the caudal lobe (P less than 0.05). This study has significant implications both clinically and experimentally; it illustrates the importance of airway collateral circulation, in that apparently complete radiological obstruction of the BEA does not necessarily mean complete obstruction of systemic blood flow. We also conclude that, in experimental studies in which the role of the bronchial circulation in airway pathophysiology is examined, ETOH is the agent of choice.  相似文献   

12.
Contents of the pleural space   总被引:3,自引:0,他引:3  
  相似文献   

13.
14.
15.
16.
A substantial body of evidence indicates that active transport of ions is important in modulating the resolution process of pulmonary edema. The biochemical regulation of this ion transport mechanism is still under investigation. In this study we evaluated the effect of an adenosine 3',5'-cyclic monophosphate (cAMP) analogue [dibutyryl cAMP (DBcAMP)] and a phosphodiesterase inhibitor (aminophylline) given alone or together on lung liquid and protein clearance. To study lung liquid and protein clearance, we measured the removal of 100 ml of autologous serum from the air spaces of anesthetized and ventilated adult sheep. Either serum alone or serum mixed with 10(-3) M DBcAMP, 10(-3) M or 10(-5) M aminophylline, or 10(-3) M aminophylline plus 10(-3) M DBcAMP was instilled. After 4 h, the residual lung water was 73.5 +/- 8.7 ml when serum alone was instilled and 56.8 +/- 13.6 ml when aminophylline and DBcAMP were given together. Neither aminophylline nor DBcAMP alone increased lung liquid clearance. However, the increase in clearance cannot be explained by an increase in protein clearance or changes in the pulmonary hemodynamics. These data suggest that the cAMP second messenger system can stimulate lung liquid clearance in vivo.  相似文献   

17.
18.
We developed an experimental approach to measure the pulmonary interstitial pressure with the micropuncture technique in in situ lungs with an intact pleural space. Experiments were done in anesthetized paralyzed rabbits that were oxygenated via an endotracheal tube with 50% humidified oxygen and kept in either the supine or the lateral position. A small area of an intercostal space was cleared of the intercostal muscles down to the endothoracic fascia. Subsequently a "pleural window" was opened by stripping the endothoracic fascia over a 0.2-cm2 surface and leaving the parietal pleura (approximately 10 microns thick). Direct micropuncture through the pleural window was performed with 2- to 3-microns-tip pipettes connected to a servo-null pressure-measuring system. We recorded pleural liquid pressure and, after inserting the pipette tip into the lung, we recorded interstitial pressure from subpleural lung tissue. Depth of recording for interstitial pressure averaged 263 +/- 122 (SD) microns. We report data gathered at 26, 53, and 84% lung height (relative to the most dependent portion of the lung). For the three heights, interstitial pressure was -9.8 +/- 3, -10.1 +/- 1.6, and -12.5 +/- 3.7 cmH2O, respectively, whereas the corresponding pleural liquid pressure was -3.4 +/- 0.5, -4.4 +/- 1, and -5.2 +/- 0.3 cmH2O, respectively.  相似文献   

19.
Occurrence of transcytosis in pleural mesothelium was verified by measuring removal of labeled macromolecules from pleural liquid in experiments without and with nocodazole. To this end, we injected 0.3 ml of Ringer-albumin with 750 microg of albumin-Texas red or with 600 microg of dextran 70-Texas red in the right pleural space of anesthetized rabbits, and after 3 h we measured pleural liquid volume, labeled macromolecule concentration, and, hence, labeled macromolecule quantity in the liquid of this space. Labeled albumin left was 318 +/- 28 microg in control and 419 +/- 17 microg in nocodazole experiments (means +/- SE); hence, whereas ventilation was similar its removal was greater (P < 0.01) in control experiments. Labeled dextran left was 283 +/- 10 microg in control and 381 +/- 21 microg in nocodazole experiments; hence, whereas ventilation was similar its removal was greater (P < 0.01) in control experiments. These findings indicate occurrence of transcytosis from the pleural space. Liquid removed by transcytosis was 0.05 ml/h. This amount times unlabeled albumin concentration under physiological conditions (10 mg/ml) times lumen-vesicle partition coefficient for albumin (0.78) provides fluid-phase albumin transcytosis: approximately 203 microg. h(-1) kg(-2/3). Transcytosis might contribute a relevant part of protein and liquid removal from the pleural space.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号