首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Galleria mellonella larvae cultured axenically were treated with axenic dauer juveniles of Heterorhabditis bacteriophora and Steinernema carpocapsae. After 3 days S. carpocapsae had killed all insects, with 9.4 +/- 4.3 nematodes per larva. H. bacteriophora were unable to kill G. mellonella, although 13.3 +/- 6.4 nematodes per Galleria were found in the hemocoel. Invading nematodes of both strains recovered from the dauer stage. H. bacteriophora developed into hermaphrodites with eggs and J1 in the uterus and in the hemolymph of the living insects. Development beyond the J1 stage was not recorded. An injection of supernatants from different Photorhabdus luminescens cultures killed the insects but could not provide nutrients to support a further development. Only the injection of bacterial cells supported production of dauers in the axenic insects. Axenic S. carpocapsae developed to adults and produced offspring. After 3 weeks an average of 5275 nematodes per larva were counted, of which 6.7% were dauer juveniles, 39.2% other juvenile stages, 11.9% males, and 42.2% females. Compared to in vivo reproduction in the presence of the symbiotic bacterium Xenorhabdus nematophilus the dauer juvenile yields were low. Even after 5 weeks the percentage of dauer juveniles did not surpass 10%.  相似文献   

2.
The bacterium Photorhabdus luminescens is a symbiont of the entomopathogenic nematode Heterorhabditis bacteriophora. The nematode requires the bacterium for infection of insect larvae and as a substrate for growth and reproduction. The nematodes do not grow and reproduce in insect hosts or on artificial media in the absence of viable P. luminescens cells. In an effort to identify bacterial factors that are required for nematode growth and reproduction, transposon-induced mutants of P. luminescens were screened for the loss of the ability to support growth and reproduction of H. bacteriophora nematodes. One mutant, NGR209, consistently failed to support nematode growth and reproduction. This mutant was also defective in the production of siderophore and antibiotic activities. The transposon was inserted into an open reading frame homologous to Escherichia coli EntD, a 4'-phosphopantetheinyl (Ppant) transferase, which is required for the biosynthesis of the catechol siderophore enterobactin. Ppant transferases catalyze the transfer of the Ppant moiety from coenzyme A to a holo-acyl, -aryl, or -peptidyl carrier protein(s) required for the biosynthesis of fatty acids, polyketides, or nonribosomal peptides. Possible roles of a Ppant transferase in the ability of P. luminescens to support nematode growth and reproduction are discussed.  相似文献   

3.
Photorhabdus luminescens (Enterobacteriaceae) is a symbiont of entomopathogenic nematodes Heterorhabditis spp. (Nematoda: Rhabditida) used for biological control of insect pests. For industrial mass production, the nematodes are produced in liquid media, pre-incubated with their bacterial symbiont, which provides nutrients essential for the nematode's development and reproduction. Particularly under in vitro conditions, P. luminescens produces phase variants, which do not allow normal nematode development. The phase variants were distinguished based on dye absorption, pigmentation, production of antibiotic substances, occurrence of crystalline inclusion proteins and bioluminescence. To understand the significance of the phase shift for the symbiotic interaction between the bacterium and the nematode, feeding experiments tested the effect of homologous and heterologous P. luminescens phase variants isolated from a Chinese Heterorhabditis bacteriophora (HO6), the Heterorhabditis megidis type strain from Ohio (HNA) and the type strain of Heterorhabditis indica (LN2) on the in vivo and in vitro development and reproduction of the nematode species H. bacteriophora (strain HO6) and another rhabditid and entomopathogenic nematode, Steinernema carpocapsae (A24). In axenically cultured insect larvae (Galleria mellonella) and in vitro in liquid media, H. bacteriophora produced offspring on phase I of its homologous symbiont and on the heterologous symbiont of H. megidis, but not on the two corresponding phase II variants. In solid media, nematode yields were much lower on phase II than on phase I variants. On the heterologous phase I symbiont isolated from H. indica the development of H. bacteriophora was not beyond the fourth juvenile stage of the nematode in any of the media tested, but further progressed on phase II with even a small amount of offspring recorded in solid media. Infective juveniles of S. carpocapsae did not develop beyond the J3 stage on all phase I P. luminescens. They died in phase I P. luminescens isolated from H. bacteriophora. Development to adults was recorded for S. carpocapsae on all phase II symbionts and offspring were produced in all media except in liquid. It is concluded that a lack of essential nutrients or the production of toxins is not responsible for the negative impact of homologous phase II symbiont cells on the development and reproduction of H. bacteriophora. The infective juveniles of H. bacteriophora retained cells of the homologous phase I symbiont, but not phase II cells and cells from heterologous symbionts, indicating that the transmission of the symbiont by the infective juvenile is selective for phase I cells and the homologous bacterial associate.  相似文献   

4.
The nematode Heterorhabditis bacteriophora is the vector for transmitting the entomopathogenic bacterium Photorhabdus luminescens between insect larvae. The dauer juvenile (DJ) stage nematode selectively retains P. luminescens in its intestine until it releases the bacteria into the hemocoel of an insect host. We report the results of studying the transmission of the bacteria by its nematode vector. Cells of P. luminescens labeled with green fluorescent protein preferentially colonized a region of the DJ intestine immediately behind the basal bulb, extending for various distances toward the anus. Incubation of DJ nematodes in vitro in insect hemolymph induced regurgitation of the bacteria. Following a 30-min lag, the bacteria migrated in a gradual and staggered movement toward and ultimately exited the mouth. This regurgitation reaction was induced by a low-molecular-weight, heat- and protease-stable, anionic component present in arthropod hemolymph and in supernatants from insect cell cultures. Nematodes anesthetized with levamisole or treated with the antihelmenthic agent ivermectin did not release their bacteria into hemolymph. The ability to visualize P. luminescens in the DJ nematode intestine provides the first clues to the mechanism of release of the bacteria during infection of insect larvae. This and the partial characterization of a component of hemolymph triggering release of the bacteria render this fascinating example of both a mutualistic symbiosis and disease transmission amenable to future genetic and molecular study.  相似文献   

5.
6.
The symbiotic interaction between Steinernema carpocapsae and Xenorhabdus nematophila was investigated by comparing the reproduction, morphology, longevity, behavior, and efficacy of the infective juvenile (IJ) from nematodes reared on mutant or wild-type bacterium. Nematodes reared on the mutant X. nematophila HGB151, in which an insertion of the bacterial gene, rpoS, eliminates the retention of the bacterium in the intestinal vesicle of the nematode, produced IJs without their symbiotic bacterium. Nematodes reared on the wild-type bacterium (HGB007) produced IJs with their symbiotic bacterium. One or the other bacterial strain injected into Galleria mellonella larvae followed by exposing the larvae to IJs that were initially symbiotic bacterium free produced progeny IJs with or without their Xenorhabdus-symbiotic bacterium. The two bacterial strains were not significantly different in their effect on IJ production, sex ratio, or IJ morphology. IJ longevity in storage was not influenced by the presence or absence of the bacterial symbiont at 5 and 15 °C, but IJs without their bacterium had greater longevity than IJs with their bacterium at 25 and 30 °C, suggesting that there was a negative cost to the nematode for maintaining the bacterial symbiont at these temperatures. IJs with or without their symbiotic bacterium were equally infectious to Spodoptera exigua larvae in laboratory and greenhouse and across a range of soil moistures, but the absence of the bacterial symbiont inhibited nematodes from producing IJ progeny within the host cadavers. In some situations, such as where no establishment of an alien entomopathogenic nematode is desired in the environment, the use of S. carpocapsae IJs without their symbiotic bacterium may be used to control some soil insect pests.  相似文献   

7.
Entomopathogenic nematodes (EPNs) in the genera Steinernema and Heterorhabditis are symbiotically associated with bacteria in the genera Xenorhabdus and Photorhabdus, respectively. The symbiotic bacteria produce a chemical compound(s) that deterred ants from feeding on nematode-killed insects (i.e., cadavers) and has been previously referred to as an Ant Deterrent Factor (ADF). We studied the response of different arthropod scavenger species which included the ant Lepisiota frauenfeldi, cricket Gryllus bimaculatus, wasps Vespa orientalis and Paravespula sp., and calliphorid fly Chrysomya albiceps, to ADF. These scavengers (ants, crickets, and wasps) were exposed to cadavers with and without the nematode/bacterium complex or to Photorhabdus luminescens cultures of different ages on different substrates. The ant, cricket, and wasp species did not feed on nematode-killed insects containing the nematode/bacterium complex that were 2 days old and older but fed on 1-day-old nematode-killed and freeze -killed insects. Crickets consumed 2- to 7-day-old axenic nematode-killed insects, 1-, 4-, and 5-day-old insects killed by the bacterium, Serratia marcescens, and freeze-killed, putrid insects that were up to 10 days old. The crickets only partially consumed 2- and 3-day-old insects killed by S. marcescens which differed significantly from the 1-, 4-, and 5-day-old killed insects by this bacterium. Ants fed only on 5% sucrose solution (control) and 1- to 3- day old cultures of P. luminescens containing 5% sucrose but not on older cultures of P. luminescens. Wasps did not feed on meat treated with P. luminescens supernatant, whereas they fed on meat treated with Escherichia coli supernatant and control meat. Calliphorid flies did not oviposit on meat treated with P. luminescens supernatant but did oviposit on untreated meat. Based on the response of these scavengers, the chemical compound(s) responsible for this deterrent activity should be called "scavenger deterrent factor" (SDF).  相似文献   

8.
Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points.  相似文献   

9.
Control of the Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), with the entomopathogenic nematode Heterorhabditis marelata Liu and Berry (Nematoda: Heterorhabditidae) was examined in the laboratory and in potato fields in north central Oregon. This research tested the hypothesis that varying nitrogen fertilizer levels would affect foliar alkaloid levels, which would stress the host, and allow increased nematode reproduction and long‐term control of the CPB. Laboratory results indicated that nematodes tended to reproduce more readily in CPB fed on potato plants with high levels of fertilizer. Field trials tested CPB population responses to four treatments: application of nematodes vs. no nematodes, with application of low vs. high rates of nitrogen fertilizer. The higher nitrogen application rate increased field foliar levels of the alkaloids solanine by 35%, and chaconine by 41% over the season. Nematodes were applied twice during the season, causing a 50% reduction in adult CPB populations, and producing six times as many dead prepupae in nematode‐treated soil samples as in the untreated samples. However, no reproducing nematodes were found in the 303 dead prepupae and pupae collected from nematode‐treated plots. Nitrogen fertilizer levels, and their related alkaloid levels, did not affect nematode infection rates or reproduction in the field. Foliar alkaloid levels of plants from the growth chamber were 3–6‐fold as high as those in the field, which may explain the variation in nematode response to nitrogen applications to host plants of the CPB. Heterorhabditis marelata is effective for controlling CPB in the field, and does not have negative non‐target effects on one of the most common endemic CPB control agents, Myiopharus doryphorae (Riley) (Diptera: Tachinidae), but the low rate of nematode reproduction cannot be manipulated through alkaloid stress to the beetle. Until H. marelata can be mass‐produced in an inexpensive manner, it will not be a commercially viable control for CPB.  相似文献   

10.
The three currently recognised Photorhabdus species are bioluminescent bacteria that are pathogenic to insects. P. luminescens and P. temperata form a symbiotic relationship with nematodes that infect insects. P. asymbiotica, on the other hand, has only been isolated from human clinical specimens from the USA and Australia. The bacterium has been associated with locally invasive soft tissue and disseminated bacteraemic infections. An invertebrate vector for P. asymbiotica has not yet been identified.  相似文献   

11.
Antagonistic factors, broadly identified as antibiosis, competition and natural enemies, impact on entomopathogenic nematodes. Antibiosis can occur through the release of plant chemicals from the roots into the soil, which may adversely affect the host-finding behavior of the infective stage nematode, or the presence of these chemicals in the host insect may negatively affect nematode reproduction. In laboratory studies, intra-specific and inter-specific competition reduces nematode fitness, and inter-specific competition can cause local extinction of a nematode species. For example, after concomitant infection of a host, a steinernematid species usually excludes a heterorhabditid species. The mechanism for the steinernematid superiority has been postulated to be a bacteriocin(s) produced by Xenorhabdus, the symbiotic bacterium of the steinernematid, which prevents Photorhabdus, the symbiotic bacterium of the heterorhabditid, from multiplying. Inter-specific competition between two steinernematid species shows that both can co-exist in a host, but one species will eventually prevail in the environment. By having different foraging strategies, however, both steinermatid species may co-exist in the same habitat. An important issue is whether the introduction of an exotic entomopathogenic nematode species will competitively displace an indigenous nematode species. Although the environmental risks are small, the recommended policy is that the introduction of exotic nematodes be regulated. With other pathogens, entomopathogenic nematodes can out-compete entomopathogenic fungi, but not Bacillus thuringiensis, for the same host individual when both the nematode and entomopathogen are applied simultaneously. The best studied natural enemy is the nematophagous fungus, Hirsutella rhossiliensis, which causes higher mortality in Steinernema glaseri compared with Heterorhabditis bacteriorphora. Differential susceptibility to the fungus may be associated with the retention of the second-stage cuticle by H. bacteriophora. Invertebrate predators including mites and collembolans feed on entomopathogenic nematodes. Although a number of studies have been conducted with antagonists, there is a dearth of field data. We suggest that long-term research plots be established where natural populations of entomopathogenic nematodes occur and include antagonists as a component of such studies.  相似文献   

12.
X Qiu  X Yan  M Liu  R Han 《PloS one》2012,7(8):e43114
Rifampin resistant (Rif(R)) mutants of the insect pathogenic bacterium Photorhabdus luminescens LN2 from entomopathogenic nematode Heterorhabditis indica LN2 were genetically and proteomically characterized. The Rif(R) mutants showed typical phase one characters of Photorhabdus bacteria, and insecticidal activity against Galleria mellonella larvae, but surprisingly influenced their nematicidal activity against axenic infective juveniles (IJs) of H. bacteriophora H06, an incompatible nematode host. 13 out of 34 Rif(R) mutants lost their nematicidal activity against H06 IJs but supported the reproduction of H06 nematodes. 7 nematicidal-producing and 7 non-nematicidal-producing Rif(R) mutants were respectively selected for rpoB sequence analysis. rpoB mutations were found in all 14 Rif(R) mutants. The rpoB (P564L) mutation was found in all 7 mutants which produced nematicidal activity against H06 nematodes, but not in the mutants which supported H06 nematode production. Allelic exchange assays confirmed that the Rif-resistance and the impact on nematicidal activity of LN2 bacteria were conferred by rpoB mutation(s). The non-nematicidal-producing Rif(R) mutant was unable to colonize in the intestines of H06 IJs, but able to colonize in the intestines of its indigenous LN2 IJs. Proteomic analysis revealed different protein expression between wild-type strain and Rif(R) mutants, or between nematicidal-producing and non nematicidal-producing mutants. At least 7 putative proteins including DsbA, HlpA, RhlE, RplC, NamB (a protein from T3SS), and 2 hypothetical proteins (similar to unknown protein YgdH and YggE of Escherichia coli respectively) were probably involved in the nematicidal activity of LN2 bacteria against H06 nematodes. This hypothesis was further confirmed by creating insertion-deletion mutants of three selected corresponding genes (the downregulated rhlE and namB, and upregualted dsbA). These results indicate that the rpoB mutations greatly influence the symbiotic association between the symbionts and their entomopathogenic nematode hosts.  相似文献   

13.
Influence of Osmolarity on Phase Shift in Photorhabdus luminescens   总被引:2,自引:0,他引:2       下载免费PDF全文
The influence of osmolarity and other environmental factors like low oxygen levels, light, extreme pH values, and temperatures on phase variation of Photorhabdus luminescens, the symbiotic bacterium of entomopathogenic nematodes of the genus Heterorhabditis, was investigated. Only subculturing in low-osmolarity medium triggered a phase shift to secondary phase reliably.  相似文献   

14.
Bacteriocins are proteins produced by bacteria to destroy other bacteria occupying their ecological niche. Photorhabdus luminescens is an insect pathogenic bacterium carried by an entomopathogenic nematode and occupies several different niches in its life cycle. The nematode enters the insect and releases a single strain of P. luminescens. The bacteria then kill the host and the bacteria and nematodes replicate within the cadaver. Strikingly, at the end of the infection the cadaver is still occupied by a single strain of bacterium, suggesting that P. luminescens can destroy other bacteria entering, or present within, the insect. Here we describe four loci encoding 'lumicins' in P. luminescens subsp. akhurstii strain W14. The lumicins are novel bacteriocins capable of killing other strains of Photorhabdus and Escherichia coli. These loci predict killer proteins and multiple dual type immunity proteins with domains similar to pyocins and colicins. The killer proteins are chimeric in nature with multiple domains, one of which is similar to the uropathogenic-specific protein (USP) described from uropathogenic E. coli. The implications of these novel bacteriocins for the lifestyle of Photorhabdus and the potential role of USP as a bacteriocin in E. coli are discussed.  相似文献   

15.
In this study antisera against Photorhabdus luminescens strains were prepared for the first time. P. luminescens is a bacterial symbiont of entomopathogenic nematodes belonging to the genus Heterorhabditis. To characterize P. luminescens strains and form variants, we produced polyclonal antisera against P. luminescens PE (obtained from nematode strain NLH-E87.3) and against the primary and secondary forms of P. luminescens PSH (obtained from nematode strain DH-SH1). In double-diffusion tests all form variants of strain PE reacted with the antiserum against the primary form, but each variant produced a different diffusion pattern. The primary and secondary forms of strain PSH were also serologically different. Antiserum 9226 reacted with almost all P. luminescens strains tested, but it reacted differently with each strain in the double-diffusion test, showing that the strains were serologically different. The specificity of the antisera was increased by cross-absorption. After cross-absorption the antiserum against the strain PSH primary or secondary form was specific for that form and did not react with the other form. Using the cross-absorbed antisera in immunofluorescence cell-staining tests, we could distinguish primary and secondary form cells in a mixed strain PSH culture.  相似文献   

16.
The production of an ant-deterrent factor(s) (ADF) by Xenorhabdus nematophila and Photorhabdus luminescens, the symbiotic bacteria of the nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora, respectively, was examined. In addition to an in vivo assay in which bacteria were tested for their ability to produce ADF within insect cadavers (M.E. Baur, H. K. Kaya, and D. R. Strong, Biol. Control 12:231-236, 1998), an in vitro microtiter dish assay was developed to monitor ADF activity produced by bacteria grown in cultures. Using these methods, we show that ADF activity is present in the supernatants of bacterial cultures, is filterable, heat stable, and acid sensitive, and passes through a 10-kDa-pore-size membrane. Thus, ADF appears to be comprised of a small, extracellular, and possibly nonproteinaceous compound(s). The amount of ADF repellency detected depends on the ant species being tested, the sucrose concentration (in vitro assays), and the strain, form, and age of the ADF-producing bacteria. These findings demonstrate that the symbiotic bacteria of some species of entomopathogenic nematodes produce a compound(s) that deters scavengers such as ants and thus could protect nematodes from being eaten during reproduction within insect cadavers.  相似文献   

17.
The entomopathogenic nematodes Heterorhabditis megidis and Steinernema feltiae turned out to be successful antagonists of the orthopteran insects Locusta migratoria and Schistocerca gregaria. The death rate of locusts maintained on nematode-inoculated sand was remarkably high. Even dosages as low as one nematode per cubic centimeter of sand killed approximately 50% of the locusts within 10 days. The impact of parasitation on locusts' immune defense was closely investigated for L. migratoria parasitized by H. megidis. Adult locusts died within 30-35 h after being fed with 50 infective H. megidis juveniles. Within the first 30 h after ingestion of the nematodes, locust hemolymph was assayed for alterations in the humoral and cellular defense components and for the presence of the nematode-associated Photorhabdus luminescens bacteria. Humoral defense was generally low without any correlation to the state of parasitation. There was no detectable activity against Escherichia coli and only little lysozyme-like activity against Micrococcus luteus. In contrast, cellular defense components were strongly influenced by parasitation. Most interestingly, the phagocytic capacity of the hemocytes was already hampered 12 h after oral application of the nematodes, whereas considerable hemocyte death occurred not earlier than 24 h after feeding. The nematode-associated bacteria could be detected in hemolymph of some of the nematode-fed locusts as early as 3 h after feeding and in all hemolymph samples after 24 h. Supernatants from isolated P. luminescens cultures were able to inhibit the L. migratoria phagocytes in vitro; thus the successful parasitation appears to be dependent on an inhibition by bacteria-released compounds rather than on overloading or simply killing of the phagocytic active hemocytes.  相似文献   

18.
Photorhabdus luminescens is a pathogenic bacterium that lives in the guts of insect-pathogenic nematodes. After invasion of an insect host by a nematode, bacteria are released from the nematode gut and help kill the insect, in which both the bacteria and the nematodes subsequently replicate. However, the bacterial virulence factors associated with this "symbiosis of pathogens" remain largely obscure. In order to identify genes encoding potential virulence factors, we performed approximately 2,000 random sequencing reads from a P. luminescens W14 genomic library. We then compared the sequences obtained to sequences in existing gene databases and to the Escherichia coli K-12 genome sequence. Here we describe the different classes of potential virulence factors found. These factors include genes that putatively encode Tc insecticidal toxin complexes, Rtx-like toxins, proteases and lipases, colicin and pyocins, and various antibiotics. They also include a diverse array of secretion (e.g., type III), iron uptake, and lipopolysaccharide production systems. We speculate on the potential functions of each of these gene classes in insect infection and also examine the extent to which the invertebrate pathogen P. luminescens shares potential antivertebrate virulence factors. The implications for understanding both the biology of this insect pathogen and links between the evolution of vertebrate virulence factors and the evolution of invertebrate virulence factors are discussed.  相似文献   

19.
We investigated the temperature effects on the virulence, development, reproduction, and motility of two Korean isolates of entomopathogenic nematodes, Steinernema glaseri Dongrae strain and S. longicaudum Nonsan strain. In addition, we studied the growth and virulence of their respective symbiotic bacterium, Xenorhabdus poinarii for S. glaseri and Xenorhabdus sp. for S. longicaudum, in an insect host at different temperatures. Insects infected with the nematode-bacterium complex or the symbiotic bacterium was placed at 13 degrees C, 18 degrees C, 24 degrees C, 30 degrees C, or 35 degrees C in the dark and the various parameters were monitored. Both nematode species caused mortality at all temperatures tested, with higher mortalities occurring at temperatures between 24 degrees C and 30 degrees C. However, S. longicaudum was better adapted to cold temperatures and caused higher mortality at 18 degrees C than S. glaseri. Both nematode species developed to adult at all temperatures, but no progeny production occurred at 13 degrees C or 35 degrees C. For S. glaseri, nematode progeny production was best at inocula levels above 20 infective juveniles/host at 24 degrees C and 30 degrees C, but for S. longicaudum, progeny production was generally better at 24 degrees C. Steinernema glaseri showed the greatest motility at 30 degrees C, whereas S. longicaudum showed good motility at 24 degrees C and 30 degrees C. Both bacterial species grew at all tested temperatures, but Xenorhabdus sp. was more virulent at low temperatures (13 degrees C and 18 degrees C) than X poinarii.  相似文献   

20.
《Journal of molecular biology》2019,431(23):4559-4568
Phenotypic heterogeneity in bacterial cell populations allows genetically identical organisms to different behavior under similar environmental conditions. The Gram‐negative bacterium Photorhabdus luminescens is an excellent organism to study phenotypic heterogeneity since their life cycle involves a symbiotic interaction with soil nematodes as well as a pathogenic association with insect larvae. Phenotypic heterogeneity is highly distinct in P. luminescens. The bacteria exist in two phenotypic forms that differ in various morphologic and phenotypic traits and are therefore distinguished as primary (1°) and secondary (2°) cells. The 1 cells are bioluminescent, pigmented, produce several secondary metabolites and exo-enzymes, and support nematode growth and development. The 2° cells lack all these 1°-specific phenotypes. The entomopathogenic nematodes carry 1° cells in their upper gut and release them into an insect's body after slipping inside. During insect infection, up to the half number of 1° cells undergo phenotypic switching and convert to 2° cells. Since the 2° cells are not able to live in nematode symbiosis any more, they cannot re-associate with their symbiosis partners after the infection and remain in the soil. Phenotypic switching in P. luminescens has to be tightly regulated since a high switching frequency would lead to a complete break-down of the nematode-bacteria life cycle. Here, we present the main regulatory mechanisms known to-date that are important for phenotypic switching in P. luminescens cell populations and discuss the biological reason as well as the fate of the 2° cells in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号