共查询到20条相似文献,搜索用时 15 毫秒
1.
Our aim was to clarify the relationship between power output and the different mechanical parameters influencing it during squat jumps, and to further use this relationship in a new computation method to evaluate power output in field conditions. Based on fundamental laws of mechanics, computations were developed to express force, velocity and power generated during one squat jump. This computation method was validated on eleven physically active men performing two maximal squat jumps. During each trial, mean force, velocity and power were calculated during push-off from both force plate measurements and the proposed computations. Differences between the two methods were not significant and lower than 3% for force, velocity and power. The validity of the computation method was also highlighted by Bland and Altman analyses and linear regressions close to the identity line (P<0.001). The low coefficients of variation between two trials demonstrated the acceptable reliability of the proposed method. The proposed computations confirmed, from a biomechanical analysis, the positive relationship between power output, body mass and jump height, hitherto only shown by means of regression-based equations. Further, these computations pointed out that power also depends on push-off vertical distance. The accuracy and reliability of the proposed theoretical computations were in line with those observed when using laboratory ergometers such as force plates. Consequently, the proposed method, solely based on three simple parameters (body mass, jump height and push-off distance), allows to accurately evaluate force, velocity and power developed by lower limbs extensor muscles during squat jumps in field conditions. 相似文献
2.
3.
Kilduff LP Bevan HR Kingsley MI Owen NJ Bennett MA Bunce PJ Hore AM Maw JR Cunningham DJ 《Journal of strength and conditioning research / National Strength & Conditioning Association》2007,21(4):1134-1138
Following a bout of high-intensity exercise of short duration (preload stimulus), the muscle is in both a fatigued and a potentiated (referred to as postactivation potentiation) state. Consequently, subsequent muscle performance depends on the balance between these 2 factors. To date, there is no uniform agreement about the optimal recovery required between the preload stimulus and subsequent muscle performance to gain optimal performance benefits. The aim of the present study was to determine the optimal recovery time required to observe enhanced muscle performance following the preload stimulus. Twenty-three professional rugby players (13 senior international players) performed 7 countermovement jumps (CMJs) and 7 ballistic bench throws at the following time points after a preload stimulus (3 repetition maximum [3RM]): baseline, approximately 15 seconds, and 4, 8, 12, 16, and 20 minutes. Their peak power output (PPO) was determined at each time point. Statistical analyses revealed a significant decrease in PPO for both the upper (856 +/- 121 W vs. 816 +/- 121 W, p < 0.001) and the lower (4,568 +/- 509 W vs. 4,430 +/- 495 W, p = 0.005) body when the explosive activity was performed approximately 15 seconds after the preload stimulus. However, when 12 minutes was allowed between the preload stimulus and the CMJ and ballistic bench throws, PPO was increased by 8.0 +/- 8.0% and 5.3 +/- 4.5%, respectively. Based on the above results, we conclude that muscle performance (e.g., power) can be significantly enhanced following a bout of heavy exercise (preload stimulus) in both the upper and the lower body, provided that adequate recovery (8-12 minutes) is given between the preload stimulus and the explosive activity. 相似文献
4.
Randell AD Cronin JB Keogh JW Gill ND Pedersen MC 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(12):3514-3518
Randell, AD, Cronin, JB, Keogh, JWL, Gill, ND, and Pedersen, MC. Reliability of performance velocity for jump squats under feedback and nonfeedback conditions. J Strength Cond Res 25(12): 3514-3518, 2011-Advancements in the monitoring of kinematic and kinetic variables during resistance training have resulted in the ability to continuously monitor performance and provide feedback during training. If equipment and software can provide reliable instantaneous feedback related to the variable of interest during training, it is thought that this may result in goal-oriented movement tasks that increase the likelihood of transference to on-field performance or at the very least improve the mechanical variable of interest. The purpose of this study was to determine the reliability of performance velocity for jump squats under feedback and nonfeedback conditions over 3 consecutive training sessions. Twenty subjects were randomly allocated to a feedback or nonfeedback group, and each group performed a total of 3 "jump squat" training sessions with the velocity of each repetition measured using a linear position transducer. There was less change in mean velocities between sessions 1-2 and sessions 2-3 (0.07 and 0.02 vs. 0.13 and -0.04 m·s), less random variation (TE = 0.06 and 0.06 vs. 0.10 and 0.07 m·s) and greater consistency (intraclass correlation coefficient = 0.83 and 0.87 vs. 0.53 and 0.74) between sessions for the feedback condition as compared to the nonfeedback condition. It was concluded that there is approximately a 50-50 probability that the provision of feedback was beneficial to the performance in the squat jump over multiple sessions. It is suggested that this has the potential for increasing transference to on-field performance or at the very least improving the mechanical variable of interest. 相似文献
5.
Irineu Loturco Michael R. McGuigan Toms T. Freitas Pedro L. Valenzuela Lucas A. Pereira Fernando Pareja-Blanco 《Biology of sport / Institute of Sport》2021,38(2):219
The aims of this study were to compare the outcomes and provide reference data for a set of barbell mechanical parameters collected via a linear velocity transducer in 126 male sprinters (n = 62), rugby players (n = 32), and soccer players (n = 32). Bar-velocity, bar-force, and bar-power outputs were assessed in the jump-squat exercise with jump-squat height determined from bar-peak velocity. The test started at a load of 40% of the athletes’ body mass (BM), and a load of 10% of BM was gradually added until a clear decrement in the bar power was observed. Comparisons of bar variables among the three sports were performed using a one-way analysis of variance. Relative measures of bar velocity, force, and power, and jump-squat height were significantly higher in sprinters than in rugby (difference ranging between 5 and 35%) and soccer (difference ranging between 5 and 60%) players across all loads (40–110% of BM). Rugby players exhibited higher absolute bar-power (mean difference = 22%) and bar-force (mean difference = 16%) values than soccer players, but these differences no longer existed when the data were adjusted for BM (mean difference = 2.5%). Sprinters optimized their bar-power production at significantly greater relative loads (%BM) than rugby (mean difference = 22%) and soccer players (mean difference = 25%); nonetheless, all groups generated their maximum bar-power outputs at similar bar velocities. For the first time, we provided reference values for the jump-squat exercise for three different bar-velocity measures (i.e., mean, mean propulsive, and peak velocity) for sprinters, rugby players, and soccer players, over a wide range of relative loads. Practitioners can use these reference values to monitor their athletes and compare them with top-level sprinters and team-sport players. 相似文献
6.
Comfort P Graham-Smith P Matthews MJ Bamber C 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(5):1374-1384
The aim of this article is to present data on the strength and power characteristics of forwards and backs in a squad of elite English rugby league players and compare these findings to previously published literature from Australia. Participants were elite English rugby league players (n = 18; height 184.16 ± 5.76 cm; body mass 96.87 ± 10.92 kg, age 21.67 ± 4.10 years) who were all regular first team players for an English Superleague club. Testing included 5-, 10-, 20-m sprint times, agility, vertical jump, 40-kg squat jump, isometric squat, concentric and eccentric isokinetic knee flexion and extension. Independent t-tests were performed to compare results between forwards and backs, with paired samples t-tests used to compare bilateral differences from isokinetic assessments and agility tests. Forwards demonstrated significantly (p < 0.05) greater body mass (102.15 ± 7.5 kg), height (186.30 ± 5.47 cm), power during the 40-kg jump squat (2,106 ± 421 W), isometric force (3,122 ± 611 N) and peak torque during left concentric isokinetic knee extension (296.1 ± 54.2 N·m) compared to the backs (86.30 ± 8.97 kg; 179.87 ± 3.72 cm; 1,709 ± 286 W; 2,927 ± 607 N; 241.7 ± 35.2 N·m, respectively). However, no significant differences (p > 0.05) were noted between forwards and backs during right concentric isokinetic knee extension (274.8 ± 37.7 and 246.8 ± 25.8 N·m), concentric isokinetic knee flexion for both left (158.8 ± 28.6 and 141.0 ± 22. 7 N·m) and right legs (155.3 ± 22.9 and 128.0 ± 23.9 N·m), eccentric isokinetic knee flexion and extension, hamstring quadriceps ratios, or vertical jump (37.25 ± 4.35 and 40.33 ± 6.38 cm). In comparison, relative measures demonstrated that backs performed significantly better compared to the forwards during the 40-kg jump squat (20.71 ± 5.15 and 19.91 ± 3.91 W·kg?1) and the isometric squat (34.32 ± 7.9 and 30.65 ± 5.34 N·kg?1). Bilateral comparisons revealed no significant differences (p > 0.05) between left and right leg performances in the agility test (3.26 ± 0.18 and 3.24 ± 0.18 seconds), or between left (0.7 ± 0.10) and right (0.71 ± 0.17) leg eccentric hamstring concentric quadriceps ratios. The results demonstrate that absolute strength and power measures are generally higher in forwards compared to in backs; however, when body mass is taken into account and relative measures compared, the backs outperform the forwards. 相似文献
7.
Duthie GM Pyne DB Marsh DJ Hooper SL 《Journal of strength and conditioning research / National Strength & Conditioning Association》2006,20(1):208-214
The purpose of this study was to characterize sprint patterns of rugby union players during competition. Velocity profiles (60 m) of 28 rugby players were initially established in testing from standing, walking, jogging, and striding starts. During competition, the individual sprinting patterns of 17 rugby players were determined from video by using the individual velocity profiles. Forwards commenced sprints from a standing start most frequently (41%), whereas backs sprinted from standing (29%), walking (29%), jogging (29%), and occasionally striding (13%) starts. Forwards and backs achieved speeds in excess of 90% maximal velocity (Vmax) on 5 +/- 4 and 9 +/- 4 occasions ( approximately 50% of the sprints performed), respectively, during competition. The higher frequency of sprinting for the backs compared with the forwards highlights the importance of speed training for this positional group. The similar relative distribution of velocities achieved during competition for forwards and backs suggests both positional groups should train acceleration and Vmax qualities. The backs should have a higher total volume of sprint training. Sprinting efforts should be performed from a variety of starting speeds to mimic the movement patterns of competition. 相似文献
8.
Amonette WE Brown LE De Witt JK Dupler TL Tran TT Tufano JJ Spiering BA 《Journal of strength and conditioning research / National Strength & Conditioning Association》2012,26(7):1749-1755
The purpose of this study was to develop and validate a regression equation to estimate peak power (PP) using a large sample of athletic youths and young adults. Anthropometric and vertical jump ground reaction forces were collected from 460 male volunteers (age: 12-24 years). Of these 460 volunteers, a stratified random sample of 45 subjects representing 3 different age groups (12-15 years [n = 15], 16-18 years [n = 15], and 19-24 years [n = 15]) was selected as a validation sample. Data from the remaining 415 subjects were used to develop a new equation ("Novel") to estimate PP using age, body mass (BM), and vertical jump height (VJH) via backward stepwise regression. Independently, age (r = 0.57), BM (r = 0.83), and VJ (r = 0.65) were significantly (p < 0.05) correlated with PP. However, age did not significantly (p = 0.53) contribute to the final prediction equation (Novel): PP (watts) = 63.6 × VJH (centimeters) + 42.7 × BM (kilograms) - 1,846.5 (r = 0.96; standard error of the estimate = 250.7 W). For each age group, there were no differences between actual PP (overall group mean ± SD: 3,244 ± 991 W) and PP estimated using Novel (3,253 ± 1,037 W). Conversely, other previously published equations produced PP estimates that were significantly different than actual PP. The large sample size used in this study (n = 415) likely explains the greater accuracy of the reported Novel equation compared with previously developed equations (n = 17-161). Although this Novel equation can accurately estimate PP values for a group of subjects, between-subject comparisons estimating PP using Novel or any other previously published equations should be interpreted with caution because of large intersubject error (± >600 W) associated with predictions. 相似文献
9.
Appleby B Newton RU Cormie P 《Journal of strength and conditioning research / National Strength & Conditioning Association》2012,26(9):2538-2546
The purpose of this study was to assess the magnitude of upper and lower body strength changes in highly trained professional rugby union players after 2 years of training. An additional purpose was to examine if the changes in strength were influenced by the starting strength level, lean mass index (LMI), or chronological age. This longitudinal investigation tracked maximal strength and body composition over 3 consecutive years in 20 professional rugby union athletes. Maximal strength in the bench press and back squat and body composition was assessed during preseason resistance training sessions each year. The athletes completed a very rigorous training program throughout the duration of this study consisting of numerous resistance, conditioning and skills training sessions every week. The primary findings of this study were as follows: (a) Maximal upper and lower body strength was increased by 6.5-11.5% after 2 years of training (p = 0.000-0.002 for bench press; p = 0.277-0.165 for squat); (b) magnitude of the improvement was negatively associated with initial strength level (r = -0.569 to -0.712, p ≤ 0.05); (c) magnitude of improvement in lower body maximal strength was positively related to the change in LMI (an indicator of hypertrophy; r = 0.692-0.880, p ≤ 0.05); and (d) magnitude of improvement was not associated with the age of professional rugby union athletes (r = -0.068 to -0.345). It appears particularly important for training programs to be designed for continued muscle hypertrophy in highly trained athletes. Even in professional rugby union athletes, this must be achieved in the face of high volumes of aerobic and skills training if strength is to be increased. 相似文献
10.
Wright GA Pustina AA Mikat RP Kernozek TW 《Journal of strength and conditioning research / National Strength & Conditioning Association》2012,26(3):648-655
The purpose of this study was to determine the efficacy of estimating peak lower body power from a maximal jump squat using 3 different vertical jump prediction equations. Sixty physically active college students (30 men, 30 women) performed jump squats with a weighted bar's applied load of 20, 40, and 60% of body mass across the shoulders. Each jump squat was simultaneously monitored using a force plate and a contact mat. Peak power (PP) was calculated using vertical ground reaction force from the force plate data. Commonly used equations requiring body mass and vertical jump height to estimate PP were applied such that the system mass (mass of body + applied load) was substituted for body mass. Jump height was determined from flight time as measured with a contact mat during a maximal jump squat. Estimations of PP (PP(est)) for each load and for each prediction equation were compared with criterion PP values from a force plate (PP(FP)). The PP(est) values had high test-retest reliability and were strongly correlated to PP(FP) in both men and women at all relative loads. However, only the Harman equation accurately predicted PP(FP) at all relative loads. It can therefore be concluded that the Harman equation may be used to estimate PP of a loaded jump squat knowing the system mass and peak jump height when more precise (and expensive) measurement equipment is unavailable. Further, high reliability and correlation with criterion values suggest that serial assessment of power production across training periods could be used for relative assessment of change by either of the prediction equations used in this study. 相似文献
11.
Beaven CM Gill ND Cook CJ 《Journal of strength and conditioning research / National Strength & Conditioning Association》2008,22(2):426-432
The acute response of free salivary testosterone (T) and cortisol (C) concentrations to four resistance exercise (RE) protocols in 23 elite men rugby players was investigated. We hypothesized that hormonal responses would differ among individuals after four distinct RE protocols: four sets of 10 repetitions (reps) at 70% of 1 repetition maximum (1RM) with 2 minutes' rest between sets (4 x 10-70%); three sets of five reps at 85% 1RM with 3 minutes' rest (3 x 5-85%); five sets of 15 reps at 55% 1RM with 1 minute's rest (5 x 15-55%); and three sets of five reps at 40% 1RM with 3 minutes' rest (3 x 5-40%). Each athlete completed each of the four RE protocols in a random order on separate days. T and C concentrations were measured before exercise (PRE), immediately after exercise (POST), and 30 minutes post exercise (30 POST). Each protocol consisted of four exercises: bench press, leg press, seated row, and squats. Pooled T data did not change as a result of RE, whereas C declined significantly. Individual athletes differed in their T response to each of the protocols, a difference that was masked when examining the pooled group data. When individual data were retrospectively tabulated according to the protocol in which each athlete showed the highest T response, a significant protocol-dependent T increase for all individuals was revealed. Therefore, RE induced significant individual, protocol-dependent hormonal changes lasting up to 30 minutes after exercise. These individual responses may have important ramifications for modulating adaptation to RE and could explain the variability often observed in studies of hormonal response to RE. 相似文献
12.
McBride JM Triplett-McBride T Davie A Newton RU 《Journal of strength and conditioning research / National Strength & Conditioning Association》2002,16(1):75-82
The purpose of this investigation was to examine the effect of an 8-week training program with heavy- vs. light-load jump squats on various physical performance measures and electromyography (EMG). Twenty-six athletic men with varying levels of resistance training experience performed sessions of jump squats with either 30% (JS30, n = 9) or 80% (JS80, n = 10) of their one repetition maximum in the squat (1RM) or served as a control (C, n = 7). An agility test, 20-m sprint, and jump squats with 30% (30J), 55% (55J), and 80% (80J) of their 1RM were performed before and after training. Peak force, peak velocity (PV), peak power (PP), jump height, and average EMG (concentric phase) were calculated for the jumps. There were significant increases in PP and PV in the 30J, 55J, and 80J for the JS30 group (p 相似文献
13.
Vila H Manchado C Rodriguez N Abraldes JA Alcaraz PE Ferragut C 《Journal of strength and conditioning research / National Strength & Conditioning Association》2012,26(8):2146-2155
Women's handball is a sport, which has seen an accelerated development over the last decade. Although anthropometric and physical characteristics have been studied for male sports teams, in women's handball, studies are scarce. The aim of this study was twofold: first, to describe the anthropometric characteristics, throwing velocity, hand grip, and muscular power of the lower limbs in female handball players and second, to identify the possible differences in these parameters in terms of individual playing positions (center, back, wing, pivot, and goalkeeper). A total of 130 elite female Spanish handball players participated in the study (age 25.74 ± 4.84 years; playing experience 14.92 ± 4.88 years). Anthropometric assessment was performed for all the subjects following the International Society for the Advancement of Kinanthropometry protocols. Furthermore, all the subjects performed a vertical jump test (squat jump and countermovement jump). Hand grip and throwing velocity in several situations were also assessed. A 1-way analysis of variance and a Tukey post hoc test were used to study the differences among individual playing positions. Wings were less heavy, shorter, and showed a smaller arm span than did goalkeepers, backs and pivots (p ≤ 0.001). Additionally, pivots were heavier than centers. Backs and pivots exhibited higher muscular mass than did wings. Total players' somatotype was mesomorphy endomorphy (3.89-4.28-2.29). Centers showed higher throwing velocity levels than did wings in 9-m throws from just behind the line, with a goalkeeper. Backs exhibited higher hand-grip values than did wings. Statistical differences have been established between wings and other specific playing positions, especially with pivot and backs. Coaches can use this information to select players for the different specific positions. 相似文献
14.
目的:探究我国男子橄榄球运动员的有氧能力和比赛时的能量消耗,为精准化训练和比赛时营养策略的制定提供理论依据。方法:以18名男子橄榄球运动员(健将级)为研究对象,分别进行最大摄氧量(VO2max),乳酸阈(LT)和conconi场地测试来评定其有氧能力,并比较前、后锋之间的供能差异,用wGT3X加速度计结合团队心率探究比赛时的能量消耗,所得数据进行独立样本t检验。结果:本次检测的橄榄球运动员相对最大摄氧量较差为(42.05±3.69) ml/min·kg-1,前峰队员相对最大摄氧量为(38.83±3.52) ml/min·kg-1、后锋队员相对最大摄氧量为(47.31±3.17)ml/min·kg-1,二者之间的差异有统计学意义(P<0.05);血乳酸阈测定在7 min时出现血乳酸拐点,后锋的血乳酸阈值要高于前锋运动员;conconi场地测试与实验室VO2max有较高的相关性(r=0.772)。比赛中平均能量消耗上半场约为(276.94±18.08) kcals,下半场约为(225.58±22.86) kcals,下半场的能耗小于上半场(P<0.05)。结论:英式7人制橄榄球运动员有氧能力较弱,且前、后锋队员存在差异。 相似文献
15.
Zink AJ Perry AC Robertson BL Roach KE Signorile JF 《Journal of strength and conditioning research / National Strength & Conditioning Association》2006,20(3):658-664
This study examined the changes in peak power, ground reaction force and velocity with different loads during the performance of the parallel squat movement. Twelve experienced male lifters (26.83 +/- 4.67 years of age) performed the standard parallel squat, using loads equal to 20, 30, 40, 50, 60, 70, 80, and 90% of 1 repetition maximum (1RM). Each subject performed all parallel squats with as much explosiveness as possible using his own technique. Peak power (PP), peak ground reaction force (PGRF), peak barbell velocity (PV), force at the time of PP (FPP), and velocity at the time of PP (VPP) were determined from force, velocity, and power curves calculated using barbell velocity and ground reaction force data. No significant differences were detected among loads for PP; however, the greatest PP values were associated with loads of 40 and 50% of 1RM. Higher loads produced greater PGRF and FPP values than lower loads (p < 0.05) in all cases except between loads equal to 60-50, 50-40, and 40-30% of 1RM for PGRF, and between loads equal to 70-60 and 60-50% of 1RM for FPP. Higher loads produced lower PV and VPP values than lower loads (p < 0.05) in all cases except between the 20-30, 70-80, and 80-90% of 1RM conditions. These results may be helpful in determining loads when prescribing need-specific training protocols targeting different areas of the load-velocity continuum. 相似文献
16.
Crewther BT McGuigan MR Gill ND 《Journal of strength and conditioning research / National Strength & Conditioning Association》2011,25(7):1968-1975
This study compared the effectiveness of ratio and allometric scaling for normalizing speed, power, and strength in elite male rugby union players. Thirty rugby players (body mass [BM] 107.1 ± 10.1 kg, body height [BH] 187.8 ± 7.1 cm) were assessed for sprinting speed, peak power during countermovement jumps and squat jumps, and horizontal jumping distance. One-repetition maximum strength was assessed during a bench press, chin-up, and back squat. Performance was normalized using ratio and allometric scaling (Y/X), where Y is the performance, X, the body size variable (i.e., BM or BH), and b is the power exponent. An exponent of 1.0 was used during ratio scaling. Allometric scaling was applied using proposed exponents and derived exponents for each data set. The BM and BH variables were significantly related, or close to, performance during the speed, power and/or strength tests (p < 0.001-0.066). Ratio scaling and allometric scaling using proposed exponents were effective in normalizing performance (i.e., no significant correlations) for some of these tests. Allometric scaling with derived exponents normalized performance across all the tests undertaken, thereby removing the confounding effects of BM and BH. In terms of practical applications, allometric scaling with derived exponents may be used to normalize performance between larger rugby forwards and smaller rugby backs, and could provide additional information on rugby players of similar body size. Ratio scaling may provide the best predictive measure of performance (i.e., strongest correlations). 相似文献
17.
Baker DG Newton RU 《Journal of strength and conditioning research / National Strength & Conditioning Association》2008,22(1):153-158
Success in rugby league football seems heavily reliant on players possessing an adequate degree of various physical fitness qualities, such as strength, power, speed, agility, and endurance, as well as the individual skills and team tactical abilities. The purpose of this study was to describe and compare the lower body strength, power, acceleration, maximal speed, agility, and sprint momentum of elite first-division national rugby league (NRL) players (n = 20) to second-division state league (SRL) players (n = 20) players from the same club. Strength and maximal power were the best discriminators of which players were in the NRL or SRL squads. None of the sprinting tests, such as acceleration (10-m sprint), maximal speed (40-m sprint), or a unique 40-m agility test, could distinguish between the NRL or SRL squads. However, sprint momentum, which was a product of 10-m velocity and body mass, was better for discriminating between NRL and SRL players as heavier, faster players would possess better drive forward and conversely be better able to repel their opponents' drive forward. Strength and conditioning specialists should therefore pay particular attention to increasing lower body strength and power and total body mass through appropriate resistance training while maintaining or improving 10-m sprint speed to provide their players with the underlying performance characteristics of play at the elite level in rugby leagues. 相似文献
18.
Alemany JA Pandorf CE Montain SJ Castellani JW Tuckow AP Nindl BC 《Journal of strength and conditioning research / National Strength & Conditioning Association》2005,19(1):33-38
The purpose of this investigation was to determine the test-retest reliability and coefficient of variation of 2 novel physical performance tests. Ten healthy men (22.0 +/- 3.0 years, 87.0 +/- 8.0 kg, 20.0 +/- 5.0% body fat) performed 30 continuous and dynamic jump squats (JS) and bench throws (BT) on 4 separate occasions. The movements were performed under loaded conditions utilizing 30% of subject's predetermined 1 repetition maximum in the back squat and bench press. Mean power (MP; W), peak power (PP; W), mean velocity (MV; m.s(-1)), peak velocity (PV; m.s(-1)), and total work (TW; J) were assessed using a ballistic measurement system (Innervations Inc., Muncie, IN). Data were analyzed using repeated measures analysis of variance with Duncan's post hoc test when mean differences were p < or = 0.05. Intraclass correlation coefficient (ICC) and within-subject coefficient of variation (CV%) were also calculated. All values are presented as mean +/- SE. BT variables were statistically similar across the 4 sessions: MP (350.0 +/- 13.9 W), PP (431.4 +/- 18.5 W) MV (1.6 +/- 0.03 m.s(-1)), PV (2.0 +/- 0.03 m.s(-1)), and TW (199.1 +/- 7.2 J). For JS, session 3 PP (1,669.8 +/- 111.2 W) was significantly greater vs. sessions 1, 2, and 4 (1,601.2 +/- 58.4 W). Session 4 MP (1,403.2 +/- 88.6 W) and MV (1.9 +/- 0.1 m.s(-1)) for JS were significantly lower during sessions 1, 2, and 3 (MP: 1,479.4.5 +/- 44.8 W, MV: 2.0 +/- 0.05 m.s(-1)). TW (834.7 +/- 24.3 J) and PV (2.2 +/- 0.04 m.s(-1)) were statistically similar during all sessions for JS. The CVs ranged from 3.0 to 7.6% for the BT and 3.2 to 5.7% for the JS. ICCs for MP, PP, MV, PV, and TW were 0.92, 0.95, 0.94, 0.91, and 0.95, respectively, during BT. ICCs during JS for MP, PP, MV, PV, and TW were 0.96, 0.98, 0.94, 0.94, and 0.89, respectively. The results of the current study support the use of a 30 continuous and dynamic BT protocol as a reliable upper-body physical performance test, which can be administered with minimal practice. Slightly greater variability for JS was observed, although the test had high reliability. 相似文献
19.
Meir R Brooks L Shield T 《Journal of strength and conditioning research / National Strength & Conditioning Association》2003,17(3):566-572
This study investigated the impact of day and night games in the professional rugby league on body weight and tympanic temperature change in participants. Twenty-five players contracted to an English Super League club had their pre- and postgame body weight and tympanic temperatures recorded during 10 games played during the official professional rugby league season, representing a total of 165 player appearances. The mean (+/-SD) ambient temperature and relative humidity was 12.3 degrees C (+/-6.0) and 83.3% (+/-11.4), respectively. Body weight was recorded using a set of calibrated Soehnle digital scales with players wearing underwear only and towel-dried of all sweat (postmatch). Tympanic temperature was recorded using a Braun ThermoScan Pro LT instant thermometer. Players were allowed to ingest fluid ad libitum throughout each match. Wet and dry bulb temperatures were recorded at the commencement and completion of each match. Significant changes in pregame to postgame body weight and tympanic temperature were found, but these were not influenced by the time of day that the game was played. The mean decrease in body weight was 0.86 kg (SE 0.085, p < 0.000), and the mean increase in tympanic temperature was 0.34 degrees C (SE 0.070, p < 0.000). No significant differences in body weight or tympanic temperature change were found between forwards and backs. Participation in the English professional rugby league can produce significant decreases in body weight and increases in body temperature that may lead to impaired performance. It is important for participants, coaches, and administrators to introduce strategies that will minimize the impact of environmental conditions on thermoregulation and ultimately player performance. 相似文献
20.
Baker DG Newton RU 《Journal of strength and conditioning research / National Strength & Conditioning Association》2007,21(4):1007-1011
Athletes experienced in maximal-power and power-endurance training performed 1 set of 2 common power training exercises in an effort to determine the effects of moderately high repetitions upon power output levels throughout the set. Twenty-four and 15 athletes, respectively, performed a set of 10 repetitions in both the bench throw (BT P60) and jump squat exercise (JS P60) with a resistance of 60 kg. For both exercises, power output was highest on either the second (JS P60) or the third repetition (BT P60) and was then maintained until the fifth repetition. Significant declines in power output occurred from the sixth repetition onwards until the 10th repetition (11.2% for BT P60 and 5% for JS P60 by the 10th repetition). These findings suggest that athletes attempting to increase maximal power limit their repetitions to 2 to 5 when using resistances of 35 to 45% 1RM in these exercises. 相似文献