首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology ‘revolutionizes’ molecular biology and ‘transcends’ its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology’s use of modelling and bioinformatics, and by its scale enlargement.  相似文献   

2.
This study explores the conceptual history of systems biology and its impact on philosophical and scientific conceptions of reductionism, antireductionism and emergence. Development of systems biology at the beginning of 21st century transformed biological science. Systems biology is a new holistic approach or strategy how to research biological organisms, developed through three phases. The first phase was completed when molecular biology transformed into systems molecular biology. Prior to the second phase, convergence between applied general systems theory and nonlinear dynamics took place, hence allowing the formation of systems mathematical biology. The second phase happened when systems molecular biology and systems mathematical biology, together, were applied for analysis of biological data. Finally, after successful application in science, medicine and biotechnology, the process of the formation of modern systems biology was completed.Systems and molecular reductionist views on organisms were completely opposed to each other. Implications of systems and molecular biology on reductionist–antireductionist debate were quite different. The analysis of reductionism, antireductionism and emergence issues, in the era of systems biology, revealed the hierarchy between methodological, epistemological and ontological antireductionism. Primarily, methodological antireductionism followed from the systems biology. Only after, epistemological and ontological antireductionism could be supported.  相似文献   

3.
Systems biology is a rapidly evolving discipline that endeavours to understand the detailed coordinated workings of entire organisms, with the ultimate goal to detect differences between health and disease, or to understand how cells or entire organisms react to the environment. The editorial provides a critical evaluation of what molecular systems analysis can and cannot accomplish with existing methodologies, and how systems biology needs to merge with reductionism to yield a more comprehensive and mechanistically insightful model of a cell or organism.  相似文献   

4.
Molecular reductionism has so far failed to deliver the broad-based therapeutic insights that were initially hoped for. This form of reductionism is now being replaced by so-called "systems biology." This is a nebulously defined approach and/or discipline, with some versions of it relying excessively on hypothesis-neutral approaches and only minimally informed by key physiological concepts such as homeostasis and regulation. In this context, physiology is uniquely positioned to continue to provide impressive levels of both biological and therapeutic insight by using hypothesis-driven "classical" approaches and concepts to help frame what might be described as the "pieces of the puzzle" that emerge from molecular reductionism. The strength of physiology as a "bridge" between reductionism and epidemiology, along with its unparalleled ability to generate therapeutic insights and opportunities justifies increased attention and emphasis on our discipline into the future. Arguments relevant to this set of assertions are advanced and this paper, which was based on the 2011 Adolph Lecture, represents an effort to fill the intellectual void left by reductionism and improve scientific progress.  相似文献   

5.
In a line of a previous paper, the conditions for a theoretical biology were discussed and it was pointed out that the primary condition is that biology is an autonomous science. This statement is connected to the problem of reductionism. A discussion of the autonomy of biology shows that reductionism cannot be maintained, although particularly in physiology often physics and mathematics are used. Development, organization and evolution of biological systems are typical areas of autonomous biological researches and of autonomous theoretical developments. A sort of reduction to history seems today a nonsensical attempt to reduce the area of free theoretical biological activity.  相似文献   

6.

Background  

An old debate has undergone a resurgence in systems biology: that of reductionism versus holism. At least 35 articles in the systems biology literature since 2003 have touched on this issue. The histories of holism and reductionism in the philosophy of biology are reviewed, and the current debate in systems biology is placed in context.  相似文献   

7.
Alexander Rosenberg recently claimed (1997) that developmental biology is currently being reduced to molecular biology. cite several concrete biological examples that are intended to impugn Rosenberg's claim. I first argue that although Laubichler and Wagner's examples would refute a very strong reductionism, a more moderate reductionism would escape their attacks. Next, taking my cue from the antireductionist's perennial stress on the importance of spatial organization, I describe one form an empirical finding that refutes this moderate reductionism would take. Finally, I point out an actual example, anterior-posterior axis determination in the chick, that challenges the reductionist's belief that all developmental regularities can be explained by molecular biology. In short, I argue that Rosenberg's position can be saved from Laubichler and Wagner's criticisms and putative counter-examples, but it would not survive a different kind of counter-example.  相似文献   

8.
Several decades of research in biochemistry and molecular biology have been devoted for studies on isolated enzymes and proteins. Recent high throughput technologies in genomics and proteomics have resulted in avalanche of information about several genes, proteins and enzymes in variety of living systems. Though these efforts have greatly contributed to the detailed understanding of a large number of individual genes and proteins, this explosion of information has simultaneously brought out the limitations of reductionism in understanding complex biological processes. The genes or gene products do not function in isolation in vivo. A delicate and dynamic molecular architecture is required for precision of the chemical reactions associated with "life". In future, a paradigm shift is, therefore, envisaged, in biology leading to exploration of molecular organizations in physical and genomic context, a subtle transition from conventional molecular biology to modular biology. A module can be defined as an organization of macromolecules performing a synchronous function in a given metabolic pathway. In modular biology, the biological processes of interest are explored as complex systems of functionally interacting macromolecules. The present article describes the perceptions of the concept of modularity, in terms of associations among genes and proteins, presenting a link between reductionist approach and system biology.  相似文献   

9.
10.
DNA synthesis has become one of the technological bases of a new concept in biology: synthetic biology. The vision of synthetic biology is a systematic, hierarchical design of artificial, biology-inspired systems using robust, standardized, and well-characterized building blocks. The design concept and examples from four fields of application (genetic circuits, protein design, platform technologies, and pathway engineering) are discussed, which demonstrate the usefulness and the promises of synthetic biology. The vision of synthetic biology is to develop complex systems by simplified solutions using available material and knowledge. Synthetic biology also opens a door toward new biomaterials that do not occur in nature.  相似文献   

11.
Systems biology is a rapidly expanding field of research and is applied in a number of biological disciplines. In animal sciences, omics approaches are increasingly used, yielding vast amounts of data, but systems biology approaches to extract understanding from these data of biological processes and animal traits are not yet frequently used. This paper aims to explain what systems biology is and which areas of animal sciences could benefit from systems biology approaches. Systems biology aims to understand whole biological systems working as a unit, rather than investigating their individual components. Therefore, systems biology can be considered a holistic approach, as opposed to reductionism. The recently developed 'omics' technologies enable biological sciences to characterize the molecular components of life with ever increasing speed, yielding vast amounts of data. However, biological functions do not follow from the simple addition of the properties of system components, but rather arise from the dynamic interactions of these components. Systems biology combines statistics, bioinformatics and mathematical modeling to integrate and analyze large amounts of data in order to extract a better understanding of the biology from these huge data sets and to predict the behavior of biological systems. A 'system' approach and mathematical modeling in biological sciences are not new in itself, as they were used in biochemistry, physiology and genetics long before the name systems biology was coined. However, the present combination of mass biological data and of computational and modeling tools is unprecedented and truly represents a major paradigm shift in biology. Significant advances have been made using systems biology approaches, especially in the field of bacterial and eukaryotic cells and in human medicine. Similarly, progress is being made with 'system approaches' in animal sciences, providing exciting opportunities to predict and modulate animal traits.  相似文献   

12.
13.
A high profile context in which physics and biology meet today is in the new field of systems biology. Systems biology is a fascinating subject for sociological investigation because the demands of interdisciplinary collaboration have brought epistemological issues and debates front and centre in discussions amongst systems biologists in conference settings, in publications, and in laboratory coffee rooms. One could argue that systems biologists are conducting their own philosophy of science. This paper explores the epistemic aspirations of the field by drawing on interviews with scientists working in systems biology, attendance at systems biology conferences and workshops, and visits to systems biology laboratories. It examines the discourses of systems biologists, looking at how they position their work in relation to previous types of biological inquiry, particularly molecular biology. For example, they raise the issue of reductionism to distinguish systems biology from molecular biology. This comparison with molecular biology leads to discussions about the goals and aspirations of systems biology, including epistemic commitments to quantification, rigor and predictability. Some systems biologists aspire to make biology more similar to physics and engineering by making living systems calculable, modelable and ultimately predictable-a research programme that is perhaps taken to its most extreme form in systems biology's sister discipline: synthetic biology. Other systems biologists, however, do not think that the standards of the physical sciences are the standards by which we should measure the achievements of systems biology, and doubt whether such standards will ever be applicable to 'dirty, unruly living systems'. This paper explores these epistemic tensions and reflects on their sociological dimensions and their consequences for future work in the life sciences.  相似文献   

14.
Recently the terms "codes" and "information" as used in the context of molecular biology have been the subject of much discussion. Here I propose that a variety of structural realism can assist us in rethinking the concepts of DNA codes and information apart from semantic criteria. Using the genetic code as a theoretical backdrop, a necessary distinction is made between codes qua symbolic representations and information qua structure that accords with data. Structural attractors are also shown to be entailed by the mapping relation that any DNA code is a part of (as the domain). In this framework, these attractors are higher-order informational structures that obviate any "DNA-centric" reductionism. In addition to the implications that are discussed, this approach validates the array of coding systems now recognized in molecular biology.  相似文献   

15.
Reconstructionist molecular biology   总被引:4,自引:0,他引:4  
In the editorial inaugurating this journal, Levine (1989) pointed to a new reductionism in biology, which--unlike the old reductionism that led to specialization and isolation of areas concerned with different aspects of a complex biological problem--is providing a renewed sense of unity. This development is the result of widespread use of common experimental methodology and the emergence of signal transmission and differential gene expression as themes that are central to many areas of modern biology. I describe here a set of complementary developments in molecular biology that focus attention on the problems of complexity and organization. Simple examples are given that illustrate the difficulty of relating systemic behavior to the properties of the underlying molecular determinants, and the outlines of a general approach to this problem are presented. These developments, together with those highlighted by Levine, are leading us to a new, more integrative intellectual paradigm whose fruits will be the elucidation of fundamental issues concerning network function, design, and evolution that cannot be addressed by the current paradigm.  相似文献   

16.
17.
SYNOPSIS: Reductionism has become the object of a great dealof criticism from a variety of quarters within evolutionarybiology in recent years. Many contemporary anti-reductionistsargue that reductionism is inappropriate in biological inquirygiven the prevalence of hierarchies, scales of complexity andlevels of organization in the organic world. They further contendthat a commitment to reductionism has led evolutionary theoriststo make a large number of methodological blunders and conceptualerrors in constructing explanations of biological evolution. The contemporary critics of reductionism have not made a persuasivecase for the ontological peculiarity of the organic world. Muchof their argument concerning hierarchy and levels appears torest on assertion rather than metaphysical necessity or ontologicalpeculiarity. Moreover, the interpretations of reductionism attackedby contemporary critics in biology are narrow and overly simplistic. The modern synthetic theory of evolution may well have explanatoryinadequacies that demand the attention of biologists workingin many fields. But attempts to motivate theoretical alternativesto this theory based solely on ontological grounds appear toplace the ontological cart before the theoretical horse. Theoriesdictate ontological commitments and, as a result, it is at thelevel of theoretical rather than ontological adequacy that theassessment of the modern synthetic theory ought to proceed.  相似文献   

18.
In an increasing number of biological laboratories, the focus of research is shifting from sequence data to the functional meaning of that data. No longer content with structural mappings, there is a renewed interest abroad in what the United States Department of Energy calls, ’Bringing Genomes to Life’. For many, this means a movement beyond ’reductionism’ to a ’systems biology’. The question is, what does this mean?  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号