共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization of Exopolysaccharides Produced by Plant-Associated Fluorescent Pseudomonads 总被引:4,自引:2,他引:4 下载免费PDF全文
A total of 214 strains of plant-associated fluorescent pseudomonads were screened for the ability to produce the acidic exopolysaccharide (EPS) alginate on various solid media. The fluorescent pseudomonads studied were saprophytic, saprophytic with known biocontrol potential, or plant pathogenic. Approximately 10% of these strains exhibited mucoid growth under the conditions used. The EPSs produced by 20 strains were isolated, purified, and characterized. Of the 20 strains examined, 6 produced acetylated alginate as an acidic EPS. These strains included a Pseudomonas aeruginosa strain reported to cause a dry rot of onion, a strain of P. viridiflava with soft-rotting ability, and four strains of P. fluorescens. However, 12 strains of P. fluorescens produced a novel acidic EPS (marginalan) composed of glucose and galactose (1:1 molar ratio) substituted with pyruvate and succinate. Three of these strains were soft-rotting agents. Two additional soft-rotting strains of P. fluorescens produced a third acidic novel EPS composed of rhamnose, mannose, and glucose (1:1:1 molar ratio) substituted with pyruvate and acetate. When sucrose was present as the primary carbon source, certain strains produced the neutral polymer levan (a fructan) rather than an acidic EPS. Levan was produced by most strains capable of synthesizing alginate or the novel acidic EPS containing rhamnose, mannose, and glucose but not by strains capable of marginalan production. It is now evident that the group of bacteria belonging to the fluorescent pseudomonads is capable of elaborating a diverse array of acidic EPSs rather than solely alginate. 相似文献
2.
3.
Oxidation of Naphthenoaromatic and Methyl-Substituted Aromatic Compounds by Naphthalene 1,2-Dioxygenase 总被引:1,自引:5,他引:1 下载免费PDF全文
Oxidation of acenaphthene, acenaphthylene, and fluorene was examined with recombinant strain Pseudomonas aeruginosa PAO1(pRE695) expressing naphthalene dioxygenase genes cloned from plasmid NAH7. Acenaphthene underwent monooxygenation to 1-acenaphthenol with subsequent conversion to 1-acenaphthenone and cis- and trans-acenaphthene-1,2-diols, while acenaphthylene was dioxygenated to give cis-acenaphthene-1,2-diol. Nonspecific dehydrogenase activities present in the host strain led to the conversion of both of the acenaphthene-1,2-diols to 1,2-acenaphthoquinone. The latter was oxidized spontaneously to naphthalene-1,8-dicarboxylic acid. No aromatic ring dioxygenation products were detected from acenaphthene and acenaphthylene. Mixed monooxygenase and dioxygenase actions of naphthalene dioxygenase on fluorene yielded products of benzylic 9-monooxygenation, aromatic ring dioxygenation, or both. The action of naphthalene dioxygenase on a variety of methyl-substituted aromatic compounds, including 1,2,4-trimethylbenzene and isomers of dimethylnaphthalene, resulted in the formation of benzylic alcohols, i.e., methyl group monooxygenation products, which were subsequently converted to the corresponding carboxylic acids by dehydrogenase(s) in the host strain. Benzylic monooxygenation of methyl groups was strongly predominant over aromatic ring dioxygenation and essentially nonspecific with respect to the substitution pattern of the aromatic substrates. In addition to monooxygenating benzylic methyl and methylene groups, naphthalene dioxygenase behaved as a sulfoxygenase, catalyzing monooxygenation of the sulfur heteroatom of 3-methylbenzothiophene. 相似文献
4.
Ghirardi S Dessaint F Mazurier S Corberand T Raaijmakers JM Meyer JM Dessaux Y Lemanceau P 《Microbial ecology》2012,64(3):725-737
Rhizosphere competence of fluorescent pseudomonads is a prerequisite for the expression of their beneficial effects on plant growth and health. To date, knowledge on bacterial traits involved in rhizosphere competence is fragmented and derived mostly from studies with model strains. Here, a population approach was taken by investigating a representative collection of 23 Pseudomonas species and strains from different origins for their ability to colonize the rhizosphere of tomato plants grown in natural soil. Rhizosphere competence of these strains was related to phenotypic traits including: (1) their carbon and energetic metabolism represented by the ability to use a wide range of organic compounds, as electron donors, and iron and nitrogen oxides, as electron acceptors, and (2) their ability to produce antibiotic compounds and N-acylhomoserine lactones (N-AHSL). All these data including origin of the strains (soil/rhizosphere), taxonomic identification, phenotypic cluster based on catabolic profiles, nitrogen dissimilating ability, siderovars, susceptibility to iron starvation, antibiotic and N-AHSL production, and rhizosphere competence were submitted to multiple correspondence analyses. Colonization assays revealed a significant diversity in rhizosphere competence with survival rates ranging from approximately 0.1?% to 61?%. Multiple correspondence analyses indicated that rhizosphere competence was associated with siderophore-mediated iron acquisition, substrate utilization, and denitrification. However, the catabolic profile of one rhizosphere-competent strain differed from the others and its competence was associated with its ability to produce antibiotics phenazines and N-AHSL. Taken together, these data suggest that competitive strains have developed two types of strategies to survive in the rhizosphere. 相似文献
5.
D. C. M. Glandorf I. van der Sluis A. J. Anderson P. A. H. M. Bakker B. Schippers 《Applied microbiology》1994,60(6):1726-1733
Two fractions of agglutination activity towards fluorescent pseudomonads were detected in root washes of potato, tomato, wheat, and bean. High-molecular-mass (>106 Da) components in crude root washes agglutinated only particular saprophytic, fluorescent Pseudomonas isolates. Ion-exchange treatment of the crude root washes resulted in preparations of lower-molecular-mass (105 to 106 Da) fractions which agglutinated almost all Pseudomonas isolates examined. Also, components able to suppress agglutination reactions of pseudomonads with the lower-molecular-mass root components were detected in crude root washes of all crops studied. Pseudomonas isolates were differentially agglutinated by both types of root components. The involvement of these two types of root components in short-term adherence and in colonization was studied in potato, tomato, and grass, using Pseudomonas isolates from these crops. Short-term adherence of isolates to roots was independent of their agglutination with either type of root components. With agglutination-negative mutants, the high-molecular-mass components seemed to be involved in adherence of Pseudomonas putida Corvallis to roots of all crops studied. Short-term adherence to roots of four Pseudomonas isolates could be influenced by addition of both crude and ion-exchange-treated root washes, depending on their agglutination phenotype with these root wash preparations. Potato root colonization by 10 different isolates from this crop, over a period of 7 days, was not correlated with their agglutination phenotype. Agg- mutants of P. putida Corvallis were not impaired in root colonization. It is concluded that the root agglutinins studied can be involved in short-term adherence of pseudomonads to roots but do not play a decisive role in their root colonization. 相似文献
6.
Lignin Peroxidase Oxidation of Aromatic Compounds in Systems Containing Organic Solvents 总被引:2,自引:5,他引:2 下载免费PDF全文
Rafael Vazquez-Duhalt Donald W. S. Westlake Phillip M. Fedorak 《Applied microbiology》1994,60(2):459-466
Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hydrogen peroxide. These included anthracene, 1-, 2-, and 9-methylanthracenes, acenaphthene, fluoranthene, pyrene, carbazole, and dibenzothiophene. Of the compounds studied, lignin peroxidase was able to oxidize those with ionization potentials of <8 eV (measured by electron impact). The reaction products contain hydroxyl and keto groups. In one case, carbon-carbon bond cleavage, yielding anthraquinone from 9-methylanthracene, was detected. Kinetic constants and stability characteristics of lignin peroxidase were determined by using pyrene as the substrate in systems containing different amounts of organic solvent. Benzyl alkylation of lignin peroxidase improved its activity in a system containing water-miscible organic solvent but did not increase its resistance to inactivation at high solvent concentrations. 相似文献
7.
S ummary . The addition of chloramphenicol (5–12·5 μg/ml) to novobiocin-penicillin-cycloheximide (NPC) medium improved the selectivity of this medium for counting and isolating fluorescent pseudomonads from sources in which they form a minor component of the microflora. 相似文献
8.
Sin-ich Sugiyama Keiji Yano Kazuo Komagata Masaji Kazama Kei Arima 《Bioscience, biotechnology, and biochemistry》2013,77(2):211-216
The metabolic products of m-hydroxybenzoic acid formed by certain Pseudomonas, Micrococcus, and Bacterium strains which possess oxidizing ability of this acid were detected by paperchromatography. It was recognized that protocatechuic acid or gentisic acid are intermediary metabolites of m-hydroxybenzoic acid by these bacteria and the both acids are not detected in one cultural broth. 相似文献
9.
Catalase and Superoxide Dismutase of Root-Colonizing Saprophytic Fluorescent Pseudomonads 总被引:6,自引:3,他引:6 下载免费PDF全文
Root-colonizing, saprophytic fluorescent pseudomonads of the Pseudomonas putida-P. fluorescens group express similar levels of catalase and superoxide dismutase activities during growth on a sucrose- and amino acid-rich medium. Increased specific activities of catalase but not superoxide dismutase were observed during growth of these bacteria on components washed from root surfaces. The specific activities of both enzymes were also regulated during contact of these bacteria with intact bean roots. Increased superoxide dismutase and decreased catalase activities were observed rapidly, by 10 min upon inoculation of cells onto intact bean roots. Catalase specific activity increased with time to peak at 12 h before declining. By 48 h, the cells displayed this low catalase but maintained high superoxide dismutase specific activities. Catalase with a low specific activity and a high superoxide dismutase activity also were present in extracts of cells obtained from 7-day-old roots colonized from inoculum applied to seed. This specific activity of superoxide dismutase of root-contacted cells was about fourfold-higher in comparison to cells grown on rich medium, whereas the specific activity for catalase was reduced about fivefold. A single catalase isozyme, isozyme A, and one isozyme of superoxide dismutase, isozyme 1, were detected during growth of the bacteria on root surface components and during exposure of cells to intact bean roots for 1 h. An additional catalase, isozyme B, was detected from bacteria after exposure to the intact bean roots for 12 h. Catalase isozyme A and superoxide dismutase isozyme 1 were located in the cytoplasm and catalase band B was located in the membrane of P. putida. 相似文献
10.
S ummary . The differential value of 15 characteristics was studied for the determination of plant pathogens in the fluorescent group of the genus Pseudomonas. All but 2 of the 161 pathogenic cultures and the 15 nonpathogenic cultures examined could be placed in one of 5 groups on the basis of tests for: oxidase, potato soft rot, arginine dihydrolase, levan production and a hypersensitivity reaction in tobacco leaves. Tests for production of acid from sucrose, nitrate reductase and a lipase for margarine were useful as subsidiary determinants. Aesculin hydrolysis, gelatinase and tyrosinase tests, and the production of a blue fluorescent pigment were of little or no value at the group level, and hydrolysis of Tween 80 and the catalase reaction had no differential value. With the exception of Ps. tolaaii and two cultures of questionable pathogenicity, the pathogens studied could be separated readily from the few nonpathogens studied. A determinative scheme for plant pathogenic fluorescent pseudomonads is proposed to serve until the taxonomy of the group is better understood. 相似文献
11.
Benzene and a variety of substituted benzenes inhibited ammonia oxidation by intact cells of Nitrosomonas europaea. In most cases, the inhibition was accompanied by transformation of the aromatic compound to a more oxidized product or products. All products detected were aromatic, and substituents were often oxidized but were not separated from the benzene ring. Most transformations were enhanced by (NH4)2SO4 (12.5 mM) and were prevented by C2H2, a mechanism-based inactivator of ammonia monooxygenase (AMO). AMO catalyzed alkyl substituent hydroxylations, styrene epoxidation, ethylbenzene desaturation to styrene, and aniline oxidation to nitrobenzene (and unidentified products). Alkyl substituents were preferred oxidation sites, but the ring was also oxidized to produce phenolic compounds from benzene, ethylbenzene, halobenzenes, phenol, and nitrobenzene. No carboxylic acids were identified. Ethylbenzene was oxidized via styrene to two products common also to oxidation of styrene; production of styrene is suggestive of an electron transfer mechanism for AMO. Iodobenzene and 1,2-dichlorobenzene were oxidized slowly to halophenols; 1,4-dichlorobenzene was not transformed. No 2-halophenols were detected as products. Several hydroxymethyl (-CH2OH)-substituted aromatics and p-cresol were oxidized by C2H2-treated cells to the corresponding aldehydes, benzaldehyde was reduced to benzyl alcohol, and o-cresol and 2,5-dimethylphenol were not depleted. 相似文献
12.
Eduardo Díaz Abel Ferrndez María A. Prieto Jos L. García 《Microbiological reviews》2001,65(4):523-569
Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. 相似文献
13.
Iron-Chelating Compounds Produced by Soil Pseudomonads: Correlation with Fungal Growth Inhibition 总被引:5,自引:3,他引:5 下载免费PDF全文
Peter A. Vandenbergh Carlos F. Gonzalez Ann M. Wright Blair S. Kunka 《Applied microbiology》1983,46(1):128-132
Strains of Pseudomonas putida, Pseudomonas sp., and Pseudomonas aeruginosa were examined for their ability to grow in the presence of the iron chelator, ethylenediamine-di-(o-hydroxyphenylacetic acid). In vitro fungal inhibition assays showed that the isolates varied in their ability to inhibit the growth of representative fungal plant pathogens. Fungal inhibition in vitro was superior to that of previously reported Pseudomonas sp. Studies with Fusarium oxysporum forma sp. lycopersici and a susceptible tomato cultivar demonstrated that Pseudomonas putida PPU3.1 was able to significantly reduce wilt disease. 相似文献
14.
G. de la Fuente F. Perestelo A. Rodríguez-Prez M. A. Falcn 《Applied microbiology》1991,57(4):1275-1276
Cell suspensions of Serratia marcescens catalyzed the oxidation of aromatic aldehydes into the corresponding acids in high yield under mild conditions. 相似文献
15.
In field experiments, winter wheat was grown under different crop rotation regimes (monoculture; rotation with field beans) and differentiated intensity (cv.‘Jubilar’ with 120 kg N/ha and 1l CCC/ha; cv.‘Okapi’ with 180 kg N/ha and l CCC/ha). Plant, protection measures were carried out at three levels (no treatment; specific treatments under consideration of damage thresholds; routine spraying program). The occurrence of aerobic bacteria, fluorescent pseudomonads and strong siderophore-producers as well as the effect of the different cropping systems on the two groups of bacteria mentioned last were determined during the vegetation period at the beginning of shooting, at full bloom and after harvesting on the surface of the roots of wheat plants. In comparison to the total population of aerobic bacteria, the populations of fluorescent pseudomonads and of the strong siderophore-producing bacteria changed in a characteristic way: whereas at the beginning of shooting the highest and at full bloom the, lowest numbers were determined, a slight increase could be observed after harvest. On roots of wheat plants in monoculture, higher numbers of fluorescent pseudomonads and strong siderophore-producers were detected at the begining of shooting and at full bloom, than on those grown in rotation with field beans. The roots of cv. ‘Okapi’ (higher cropping intensity) were colonized to a higher degree by both groups of bacteria as compared to those of cv. ‘Jubilar’. After application of herbicides, a stimulation of these micro-organisms was observed at the beginning of shooting. The influences of different crop rotation schemes, intensities of cropping and plant protection measures on the occurrence of fluorescent pseudomonads were altogether less pronounced than the natural fluctuations of the population during the growth of the wheat. On the basis of morphological, physiological and biochemical properties, it could be shown that different biovars of the species Pseudomonas fluorescens dominated in the experimental field. 相似文献
16.
A survey of fluorescent pseudomonads associated with diseased wheat was conducted in South Africa during 1987 and 1988. Phenotypic features of 87 local strains were compared with those of 10 reference strains. Five groups were distinguished. Group 1 (nine reference and 16 local strains) was classified as Pseudomonas syringae pv. syringae. Group 2 (four local strains) was similar to group 1 but did not produce levan on nutrient sucrose agar. Group 3 (one reference and 33 local strains) also resembled P. s. pv. syringae, but did not elicit a hypersensitive reaction on tobacco. Group 4 (20 local strains) was mostly isolated from plants with atypical symptoms (total melanism) found in a single geographical region (Villiers) within South Africa. These strains had uniform characteristics, but failed to induce melanism on inoculated test plants. Group 5 (14 local strains) was not uniform. Twenty-eight representative local strains, selected from each of the five groups, and the 10 reference strains were used in pathogenicity and virulence tests. The four most virulent local strains were used to screen 14 wheat cultivars grown commercially in South Africa. Five of the cultivars were susceptible to these strains. Symptoms on leaves of naturally-infected plants corresponded with those already described, but the typical ear symptom (basal glume rot) was absent. 相似文献
17.
One species of hydrocarbon utilizing bacteria was isolated from soil. This strain was named as Achromobacter petrophilum No. 4017. This bacterial species utilizes normal hydrocarbons with carbon chains of nC10 to nC18, but does not utilize glucose or other carbohydrates. Achromobacter petrophilum forms small amounts of green-yellow, green-blue and violet fluorescent compounds in the medium containing n-hexadecane (nC16) as a carbon source. The mutant strain, No. 4510, which requires hypoxanthine and thiamine for growth, was obtained from Achromobacter petrophilum No. 4017 by ultraviolet irradiation and formed considerable amounts of green-yellow fluorescent compound by the addition of guanine to the n-hexadecane medium. This fluorescent compound was crystallized from culture broth. 相似文献
18.
Harrison DC 《The Biochemical journal》1927,21(6):1404-1415
19.
20.
Catalytic oxidation via the application of molecular oxygen and copper complexes is a useful pathway toward valuable low molecular mass compounds from in situ or waste stream lignins. In this study, two dimeric β-ether model compounds, one β-ether oligomer, and a milled wood lignin sample from Loblolly pine were catalytically oxidized. Yields and stability of the aromatic aldehyde and acid products were measured. Nuclear magnetic resonance spectroscopy and gel permeation chromatography were used to monitor structure/composition and molecular mass changes of the lignin before and after catalytic oxidation to study the degree of depolymerization and structure of the residual lignin. Oxidized units appear to be derived from β-aryl ether, phenylcoumaran, and biphenyl ether components. To date, this method breaks down the lignin polymeric structure reasonably effectively, producing low molecular mass products; this work also highlights some of the issues that need to be overcome to optimize this approach. 相似文献