首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloning and characterization of the rabbit POU5F1 gene.   总被引:1,自引:0,他引:1  
The product of the POUSF1 gene, Oct4, plays an important role both in embryonic development and in the self-renewal and differentiation of totipotent cells. To understand the function of Oct4 in rabbit ES cells, we cloned and sequenced the rabbit POU5F1 gene, as well as the cDNA encoded by the gene. The Oct4 cDNA contains a 1083 bp ORF encoding a 360 aa protein and a 241 bp 3' UTR sequence. Oct4 mRNA was expressed at a high level in rabbit ES cells and was barely detectable in the adult spleen, kidney, brain and muscle tissues. The POU5F1 gene is approximately 6 kb in length and includes five exons and four introns. Gene organization is similar to that of the mouse, human and bovine orthologs. Sequencing of the gene revealed an 82% (mouse), 90% (human) and 89% (bovine) overall identity at the protein level. The rabbit POUSF1 gene was mapped to chromosome 12q1.1 by PCR amplification of DNA from two putative POU5F1-containing BAC clones, which were previously mapped to chromosome 12q1.1. The cloning of the rabbit POU5F1 gene will facilitate studies on its roles in rabbit embryogenesis and ES cells.  相似文献   

2.
3.
猪POU1F1基因部分序列变异和同源性分析   总被引:5,自引:1,他引:5  
滕勇  经荣斌  宋成义  杨海明 《遗传》2004,26(6):815-821
对长白、杜洛克、约克夏、姜曲海、梅山和香猪等六个猪种的POU1F1基因第四、第五和第六外显子分别进行PCR扩增,并对含有第四、第六外显子的PCR产物和含有第五外显子的克隆产物进行测序。结果表明:六个猪种中,POU1F1基因的第四外显子存在碱基突变,为T→C。对该序列进行Nla Ⅲ 酶消化,产生两种不同的基因型(GG和HH);而第五和第六外显子则高度保守,未发现任何突变。将人POU1F1基因第四外显子、POU同源区核苷酸编码序列和氨基酸序列,分别与猪、小鼠、牛的POU1F1基因相应的核苷酸序列和氨基酸序列进行同源性比较,结果发现:人与猪、小鼠、牛的POU1F1基因第四外显子的核苷酸同源性分别高达93.9%、86.7%、92.1%,而由第四外显子编码的部分POU特异区的氨基酸序列则完全一致;人与猪、小鼠、牛POU同源区的核苷酸同源性分别为91.4%、85.1%、87.9%,氨基酸同源性分别为96.6%、94.8%、90.2%。这说明在哺乳动物中,其POU1F1蛋白的POU同源区和由第四外显子编码的POU特异区部分是高度保守的;猪可作为实验动物,建立人类相关疾病模型,为医学研究提供参考依据。  相似文献   

4.
POU domain proteins have been implicated in the regulation of a number of lineage-specific genes. Among the first POU domain proteins described were the immunoglobulin octamer-binding proteins Oct-1 and Oct-2. It was therefore of special interest when we identified a novel lymphoid POU domain protein in Southwestern (DNA-protein) screens of T-cell lambda gt11 libraries. This novel POU protein, TCF beta 1, binds in a sequence-specific manner to a critical motif in the T-cell receptor (TCR) beta enhancer. Sequence analysis revealed that TCF beta 1 represents a new class of POU domain proteins which are distantly related to other POU proteins. TCF beta 1 is encoded by multiple exons whose organization is distinct from that of other POU domain proteins. The expression of TCF beta 1 in a tissue-restricted manner and its ability to bind to multiple motifs in the TCR beta enhancer support a role in regulating TCR beta gene expression. The expression of TCF beta 1 in both B and T cells and the ability of recombinant TCF beta 1 to bind octamer and octamer-related motifs suggest that TCF beta 1 has additional roles in lymphoid cell function. The ability of TCF beta 1 to transactivate in a sequence-specific manner is consistent with a role for regulating lymphoid gene expression.  相似文献   

5.
In mammals, the pituitary POU homeodomain protein, Pit-1, binds to proximal and distal 5'-flanking sequences of the PRL gene that dictate tissue-specific expression. These DNA sequences are highly conserved among mammals but are dramatically different from PRL 5' sequences in the teleost species, Oncorhynchus tschawytscha (chinook salmon). To analyze the molecular basis for pituitary-specific gene expression in a distantly related vertebrate, we transfected CAT reporter gene constructs containing 2.4 kilobases (kb) 5'-flanking sequence from the salmon PRL (sPRL) gene into various cell types. Expression of the sPRL gene was restricted to pituitary cells, but in rat pituitary GH4 cells levels of expression were at least 90-fold lower than those obtained with a -3 kb rat PRL (rPRL) construct. Conversely, in primary teleost pituitary cells, -2.4 kb sPRL/CAT was expressed at levels about 10-fold higher than -3 kb rPRL/CAT. To determine whether species-specific transactivation by Pit-1 was sufficient to explain these species differences in PRL gene expression, we isolated a cDNA clone encoding the salmon Pit-1 POU domain and constructed a rat Pit-1 expression vector that contained salmon Pit-1 POU domain sequences substituted in frame. The chimeric Pit-1 encoded 14 amino acids unique to salmon. Coexpression of rat Pit-1 with salmon or rat PRL/CAT in transfected HeLa cells resulted in specific and strikingly comparable levels of promoter activation. Moreover, the specificity and efficacy of the chimeric salmon/rat Pit-1 was similar to wild type rat Pit-1 in activating salmon and rat PRL/CAT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
Tst-1, a member of the POU domain gene family, is expressed in specific neurons and in myelinating glia in the mammalian nervous system. Bacterially expressed Tst-1 binds specifically to the promoter of the gene encoding myelin protein P0, a Schwann cell surface adhesion molecule. In cotransfection assays, Tst-1 can specifically repress the P0 promoter. The N-terminal part of Tst-1 protein is highly glycine- and alanine-rich, a structural feature shared by the helix-loop-helix protein TFEB.  相似文献   

18.
ABSTRACT: BACKGROUND: The human OXR1 gene belongs to a class of genes with conserved functions that protect cells from reactive oxygen species (ROS). The gene was found using a screen of a human cDNA library by its ability to suppress the spontaneous mutator phenotype of an E. coli mutH nth strain. The function of OXR1 is unknown. The human and yeast genes are induced by oxidative stress and targeted to the mitochondria; the yeast gene is required for resistance to hydrogen peroxide. Multiple spliced isoforms are expressed in a variety of human tissues, including brain. RESULTS: In this report, we use a papillation assay that measures spontaneous mutagenesis of an E. coli mutM mutY strain, a host defective for oxidative DNA repair. Papillation frequencies with this strain are dependent upon a G->T transversion in the lacZ gene (a mutation known to occur as a result of oxidative damage) and are suppressed by in vivo expression of human OXR1. N-terminal, C-terminal and internal deletions of the OXR1 gene were constructed and tested for suppression of the mutagenic phenotype of the mutM mutY strain. We find that the TLDc domain, encoded by the final four exons of the OXR1 gene, is not required for papillation suppression in E. coli. Instead, we show that the protein segment encoded by exon 8 of OXR1 is responsible for the suppression of oxidative damage in E. coli. CONCLUSION: The protein segment encoded by OXR1 exon 8 plays an important role in the anti-oxidative function of the human OXR1 protein. This result suggests that the TLDc domain, found in OXR1 exons 12-16 and common in many proteins with nuclear function, has an alternate (undefined) role other than oxidative repair.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号