首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the vertebrate inner ear, the ability to detect angular head movements lies in the three semicircular canals and their sensory tissues, the cristae. The molecular mechanisms underlying the formation of the three canals are largely unknown. Malformations of this vestibular apparatus found in zebrafish and mice usually involve both canals and cristae. Although there are examples of mutants with only defective canals, few mutants have normal canals without some prior sensory tissue specification, suggesting that the sensory tissues, cristae, might induce the formation of their non-sensory components, the semicircular canals. We fate-mapped the vertical canal pouch in chicken that gives rise to the anterior and posterior canals, using a fluorescent, lipophilic dye (DiI), and identified a canal genesis zone adjacent to each prospective crista that corresponds to the Bone morphogenetic protein 2 (Bmp2)-positive domain in the canal pouch. Using retroviruses or beads to increase Fibroblast Growth Factors (FGFs) for gain-of-function and beads soaked with the FGF inhibitor SU5402 for loss-of-function experiments, we show that FGFs in the crista promote canal development by upregulating Bmp2. We postulate that FGFs in the cristae induce a canal genesis zone by inducing/upregulating Bmp2 expression. Ectopic FGF treatments convert some of the cells in the canal pouch from the prospective common crus to a canal-like fate. Thus, we provide the first molecular evidence whereby sensory organs direct the development of the associated non-sensory components, the semicircular canals, in vertebrate inner ears.  相似文献   

2.
3.
The mouse inner ear develops from a simple epithelial pouch, the otocyst, with the dorsal and ventral portions giving rise to the vestibule and cochlea, respectively. The otocyst undergoes a morphological change to generate flattened saclike structures, known as outpocketings, in the dorsal and lateral regions. The semicircular canals of the vestibule form from the periphery of the outpocketings, with the central region (the fusion plate) undergoing de-epithelialization and disappearing. However, little is known of the mechanism that orchestrates formation of the semicircular canals. We now show that the area of canonical Wnt signaling changes dynamically in the dorsal otocyst during its morphogenesis. The genes for several Wnt ligands were found to be expressed in the dorsal otocyst according to specific patterns, whereas those for secreted inhibitors of Wnt ligands were expressed exclusively in the ventral otocyst. With the use of whole-embryo culture in combination with potent modulators of canonical Wnt signaling, we found that forced persistence of such signaling resulted in impaired formation both of the lateral outpocketing and of the fusion plates of the dorsal outpocketing. Canonical Wnt signaling was found to suppress Netrin1 expression and to preserve the integrity of the outpocketing epithelium. In addition, inhibition of canonical Wnt signaling reduced the size of the otocyst, likely through suppression of cell proliferation and promotion of apoptosis. Our stage-specific functional analysis suggests that strict regulation of canonical Wnt signaling in the dorsal otocyst orchestrates the process of semicircular canal formation.  相似文献   

4.
Bone morphogenetic protein 4 (Bmp4) is expressed during multiple stages of development of the chicken inner ear. At the otocyst stage, Bmp4 is expressed in each presumptive sensory organ, as well as in the mesenchymal cells surrounding the region of the otocyst that is destined to form the semicircular canals. After the formation of the gross anatomy of the inner ear, Bmp4 expression persists in some sensory organs and restricted domains of the semicircular canals. To address the role of this gene in inner ear development, we blocked BMP4 function(s) by delivering one of its antagonists, Noggin, to the developing inner ear in ovo. Exogenous Noggin was delivered to the developing otocyst by using a replication-competent avian retrovirus encoding the Noggin cDNA (RCAS-N) or implanting beads coated with Noggin protein. Noggin treatment resulted in a variety of phenotypes involving both sensory and nonsensory components of the inner ear. Among the nonsensory structures, the semicircular canals were the most sensitive and the endolymphatic duct and sac most resistant to exogenous Noggin. Noggin affected the proliferation of the primordial canal outpouch, as well as the continual outgrowth of the canal after its formation. In addition, Noggin affected the structural patterning of the cristae, possibly via a decrease of Msx1 and p75NGFR expression. These results suggest that BMP4 and possibly other BMPs are required for multiple phases of inner ear development.  相似文献   

5.
Tsukushi is a small, leucine-rich repeat proteoglycan that interacts with and regulates essential cellular signaling cascades in the chick retina and murine subventricular zone, hippocampus, dermal hair follicles, and the cochlea. However, its function in the vestibules of the inner ear remains unknown. Here, we investigated the function of Tsukushi in the vestibules and found that Tsukushi deficiency in mice resulted in defects in posterior semicircular canal formation in the vestibules, but did not lead to vestibular hair cell loss. Furthermore, Tsukushi accumulated in the non-prosensory and prosensory regions during the embryonic and postnatal developmental stages. The downregulation of Tsukushi altered the expression of key genes driving vestibule differentiation in the non-prosensory regions. Our results indicate that Tsukushi interacts with Wnt2b, bone morphogenetic protein 4, fibroblast growth factor 10, and netrin 1, thereby controlling semicircular canal formation. Therefore, Tsukushi may be an essential component of the molecular pathways regulating vestibular development.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00627-1.  相似文献   

6.
Bone morphogenetic protein 4 (BMP4) is known to regulate dorsoventral patterning, limb bud formation and axis specification in many organisms, including the chicken. In the chick developing inner ear, BMP4 expression becomes localized in two cell clusters at the anterior and posterior edges of the otic epithelium beginning at stage 16/17 and is expressed in presumptive sensory tissue at later stages. This restricted spatiotemporal pattern of expression occurs just prior to the otocyst's transition to a more complex three-dimensional structure. To further analyze the role of BMP4 in avian otic morphogenesis, cells expressing BMP4 or its antagonist, noggin, were grown on agarose beads and implanted into the periotic mesenchyme surrounding the chick otocyst. Although the BMP4-producing cells had no effect on the mature inner ear structure when implanted alone, noggin-producing cells implanted adjacent to the BMP4 cell foci prevented normal semicircular canal development. Beads implanted at the anterior BMP4 focus eliminated the anterior and/or the horizontal canals. Noggin cells implanted at the posterior focus eliminated the posterior canal. Canal loss was prevented by co-implantation of BMP4 cell beads next to noggin beads. An antibody to the chick hair cell antigen (HCA) was used to examine sensory cell distribution, which was abnormal only in the affected tissues of noggin-exposed inner ears. These data suggest a role for BMP4 in the accurate and complete morphological development of the semicircular canals.  相似文献   

7.
The vertebrate inner ear consists of a complex labyrinth of epithelial cells that is surrounded by a bony capsule. The molecular mechanisms coordinating the development of the membranous and bony labyrinths are largely unknown. Previously, using avian retrovirus encoding Noggin (RCAS-Noggin) or beads soaked with Noggin protein, we have shown that bone morphogenetic proteins (BMPs) are important for the development of the otic epithelium in the chicken inner ear. Here, using two additional recombinant avian retroviruses, dominant negative and constitutively active forms of BMP receptors IB (BMPRIB), we show that BMPs, possibly acting through BMPRIB, are important for otic capsule formation. We also show that Bmp2 is strongly expressed in the prospective semicircular canals starting from the canal outpouch stage, suggesting that BMP2 plays an important role in canal formation. In addition, by correlating expression patterns of Bmps, their receptors, and localization of phosphorylated R-Smad (phospho R-Smad) immunoreactivity, an indicator of BMP activation, we show that BMPs emanating from the otic epithelium influence chondrogenesis of the otic capsule including the cartilage surrounding the semicircular canals.  相似文献   

8.
In the mouse embryo, Dlx5 is expressed in the otic placode and vesicle, and later in the semicircular canals of the inner ear. In mice homozygous for a null Dlx5/LacZ allele, a severe dysmorphogenesis of the vestibular region is observed, characterized by the absence of semicircular canals and the shortening of the endolymphatic duct. Minor defects are observed in the cochlea, although Dlx5 is not expressed in this region. Cristae formation is severely impaired; however, sensory epithelial cells, recognized by calretinin immunostaining, are present in the vestibular epithelium of Dlx5(-/-) mice. The maculae of utricle and saccule are present but cells appear sparse and misplaced. The abnormal morphogenesis of the semicircular canals is accompanied by an altered distribution of proliferating and apoptotic cells. In the Dlx5(-/-) embryos, no changes in expression of Nkx5.1(Hmx3), Pax2, and Lfng have been seen, while expression of bone morphogenetic protein-4 (Bmp4) was drastically reduced. Notably, BMP4 has been shown to play a fundamental role in vestibular morphogenesis of the chick embryo. We propose that development of the semicircular canals and the vestibular inner ear requires the independent control of several homeobox genes, which appear to exert their function via tight regulation of BPM4 expression and the regional organization of cell differentiation, proliferation, and apoptosis.  相似文献   

9.
The vestibulo-ocular reflex is the system of compensatory ocular movements in response to stimulation of the kinetic labyrinth seen in all vertebrates. It allows maintenance of a stable gaze even when the head is moving. Perhaps the simplest influence on the VOR is the spatial orientation of the planes of the semicircular canals relative to the extraocular muscles. It is hypothesized that the extraocular muscles are in parallel alignment with their corresponding semicircular canals in order to reduce the amount of neural processing needed and hence keep reflex times to a minimum. However, despite its obvious importance, little is known of this spatial arrangement. Moreover, nothing is known about any ontogenetic changes in the relative orientations of the extraocular muscles and semicircular canals. The morphologies of fetal and adult specimens of Homo sapiens were examined using magnetic resonance (MR) images. Three-dimensional co-ordinate data were taken from the images and used to calculate vector equations of the extraocular muscles and planes of best fit for the semicircular canals. The relative orientations of the muscles and canals were then calculated from the vectors and planes. It was shown that there are significant correlations between both the anterior and lateral semicircular canals and their corresponding extraocular muscles during ontogeny. In the case of the lateral canal with the medial rectus, the lateral canal with the lateral rectus, and the anterior canal with the inferior oblique, the trend is towards, though never reaching, alignment, whereas the anterior canal and the superior rectus muscle move out of alignment as age increases. Furthermore, it was noted that none of the six muscle-canal pairs is in perfect alignment, either during ontogeny or in adulthood. It was also shown that the three semicircular canals are not precisely orthogonal, but that the anterior and posterior canals form an angle of about 85 degrees , while the anterior and lateral canals diverge by approximately 100 degrees . Overall, it was shown that there is significant reorientation of the extraocular muscles and semicircular canals during ontogeny, but that, in most cases, there is little realignment beyond the fetal period.  相似文献   

10.
The semicircular canals of the labyrinth of vertebrates provide one way of motion detection in three-dimensional space. The fully developed form of the vertebrate labyrinth consists of six semicircular canals, three on each side of the head, whose spatial arrangement (vertical canals are placed diagonally in the head, horizontal canals are oriented earth horizontally) follows three interconnected principles: 1) bilateral symmetry, 2) push-pull operational mode, and 3) mutual orthogonality. Other sensory and motor systems related to vestibular reflexes, such as the extraocular muscles or the "optokinetic" coordinate axes encoded in the activity of the visually driven cells of the accessory optic system, share the same geometrical framework. This framework is also reflected in the anatomical networks mediating compensatory eye movements, linking each of the semicircular canals to a particular set of extraocular muscles (so-called principal vestibuloocular reflex connections to yoke muscles). These classical vestibulo-oculomotor relationships have been verified at many levels of the vertebrate hierarchy, including lateral- and frontal-eyed animals. The particular spatial orientation of the semicircular canals requires further comment and phylogenetic evaluation. The spatial arrangement of the vertical canals is already present in fossil ostracoderms, and is also exemplified in lampreys, the modern forms of once abundant agnathan species that populated the Silurian and Devonian oceans. The lampreys and ostracoderms lack horizontal canals, which appear later in all descendent vertebrates. The fully developed vertebrate labyrinth with its six semicircular canals displays distinct differences that are obvious when comparing distant taxa (e.g. elasmobranchs versus other vertebrates). Whereas the common crus of the semicircular canals in teleosts through mammals is formed between the anterior and the posterior semicircular canal, it occurs between the anterior and the horizontal canal in elasmobranchs. However, despite this morphological difference, these two vertebrate labyrinth prototypes constitute a functionally identical solution. A similar analysis holds for certain invertebrate species (crab, octopus, squid), which display an even wider variety in the physical expressions of movement detection systems when compared to vertebrates. Although the physical expressions of motion detection systems differ in the animal kingdom, the functional solutions (providing the best signal-to-noise ratio) with adherence to bilateral symmetry, push-pull operational mode, and mutual orthogonality are identical.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Bone morphogenetic proteins (BMPs) are known to play roles in inner ear development of higher vertebrates. In zebrafish, there are several reports showing that members of the BMP family are expressed in the otic vesicle. We have isolated a novel zebrafish mutant gallery, which affects the development of the semicircular canal. Gallery merely forms the lateral and the immature anterior protrusion, and does not form posterior and ventral protrusions. We found that the expression of bmp2b and bmp4, both expressed in the normal optic vesicle at the protrusion stage, are extremely upregulated in the otic vesicle of gallery. To elucidate the role of BMPs in the development of the inner ear of zebrafish, we have applied excess BMP to the wild-type otic vesicle. The formation of protrusions was severely affected, and in some cases, they were completely lost in BMP4-treated embryos. Furthermore, the protrusions in gallery treated with Noggin were partially rescued. These data indicate that BMP4 plays an important role in the development of protrusions to form semicircular canals.  相似文献   

12.
During neural tube formation, neural plate cells migrate from the lateral aspects of the dorsal surface towards the midline. Elevation of the lateral regions of the neural plate produces the neural folds which then migrate to the midline where they fuse at their dorsal tips, generating a closed neural tube comprising an apicobasally polarized neuroepithelium. Our previous study identified a novel role for the axon guidance receptor neogenin in Xenopus neural tube formation. We demonstrated that loss of neogenin impeded neural fold apposition and neural tube closure. This study also revealed that neogenin, via its interaction with its ligand, RGMa, promoted cell–cell adhesion between neural plate cells as the neural folds elevated and between neuroepithelial cells within the neural tube. The second neogenin ligand, netrin‐1, has been implicated in cell migration and epithelial morphogenesis. Therefore, we hypothesized that netrin‐1 may also act as a ligand for neogenin during neurulation. Here we demonstrate that morpholino knockdown of Xenopus netrin‐1 results in delayed neural fold apposition and neural tube closure. We further show that netrin‐1 functions in the same pathway as neogenin and RGMa during neurulation. However, contrary to the role of neogenin‐RGMa interactions, neogenin‐netrin‐1 interactions are not required for neural fold elevation or adhesion between neuroepithelial cells. Instead, our data suggest that netrin‐1 contributes to the migration of the neural folds towards the midline. We conclude that both neogenin ligands work synergistically to ensure neural tube closure. © 2012 Wiley Periodicals, Inc., 2013  相似文献   

13.
14.
Studies have reported a functional link between the arc size of the semicircular canals and locomotor agility across adult primates. However, canal size is spatially interlinked with the subarcuate fossa. This fossa can house the petrosal lobule of the paraflocculus, which also plays a role in coordinating head and eye movements. Consequently, it could be that it is the size of the petrosal lobule and fossa that are directly associated with locomotor agility, and not canal arc size. The apparent association of the latter would only follow from the spatial requirement of the canals to accommodate a suitably enlarged subarcuate fossa and petrosal lobule. This study aims to test the ontogenetic basis of this argument by examining high-resolution magnetic resonance images of fetal samples of Homo sapiens, Macaca nemestrina, and Alouatta caraya. Falsifiable null hypotheses examined are (1) that development of the subarcuate fossa is initiated by growth of the petrosal lobule, and (2) that growth of the semicircular canals and of the subarcuate fossa are independent. The findings confirm that the subarcuate fossa forms independently of a petrosal lobule in all three species, thereby falsifying the first hypothesis. Significant correlations were observed between size variables of the semicircular canals and the subarcuate fossa, particularly between the anterior canal and the opening of the fossa. These results falsify the hypothesis that the canals and fossa grow entirely independently. In the human sample, canal growth outpaces fossa growth, possibly because no petrosal lobule is present in humans. In the other two species, the subarcuate fossa simply seems to fill the space made available by canal growth. However, fossa enlargement cannot be excluded as an influence on size increase in the canals. Nevertheless, taken together, the results suggest that canal size is unlikely to be determined primarily by the spatial requirements of the subarcuate fossa and petrosal lobule, rather than by sensory demands reflected in the empirically established link with locomotor agility.  相似文献   

15.
16.
17.
The aim of the present study is to evaluate the influence of vertical semicircular canals on the subjective visual vertical (SVV). SVV was measured on conditions with or without the rotatory stimulus in a head-tilted position, 60 deg back-ward and then rotated 45 deg either to the right or left in 7 healthy volunteers. By this procedure, it was possible to evaluate the SVV elicited by the excitability of vertical semicircular canals. SVV was normal on the condition without the rotatory stimulus. However, SVV was abnormal on the condition with the rotatory stimulus, especially, which was much deviated during the posterior canal excited. We conclude that the vertical semicircular canal influences the spatial orientation such as the SVV.  相似文献   

18.
We present an experimental model for a semicircular canal with canalithiasis. Canalithiasis is a pathological condition where free-floating particles disturb the flow field in the semicircular canals. It may lead to a specific form of vertigo known as BPPV or top-shelf vertigo. A careful scaling of the physical and geometrical parameters allows us to study the mechanics of this disease on an enlarged model of a single semicircular canal with laser vibrometry and video particle tracking. Early results confirm the proper operation of the model canal and support the current theories on the mechanisms of BPPV.  相似文献   

19.
Studies have reported an empirical link between the size of the semicircular canals and locomotor agility across adult primates. In this paper, we investigate the possibility that this relationship does not follow from the function of the semicircular canals to sense head rotations, but rather reflects spatial constraints imposed by the subarcuate fossa. The latter sits among the three canals and contains the petrosal lobule of the cerebellar paraflocculus, a structure involved in neural processing of locomotion-related eye movements. Hence, it is feasible that agility-related variations of lobule and fossa size affect the arc size of the surrounding semicircular canals. The present study tests such hypothetical correlations by evaluating canal size, fossa size, and agility among extant adult primates. Phylogenetically informed multivariate regression analyses show that, after controlling for body mass, the size of the subarcuate fossa has a significant positive effect on the overall size of the anterior canal and the width of the posterior canal. Multivariate regressions involving the height of the posterior canal and overall size of the lateral canal are not significant. Further bivariate analyses confirm that fossa size is unlikely to play a role in the previously reported link between agility and the size of the posterior and lateral canals. However, fossa size, especially its opening though the arc of the anterior canal, cannot be excluded as a factor that influences the size of the anterior canal more than agility. The findings show that the most reliable functional signals pertaining to locomotion in species that possess a patent subarcuate fossa are likely to come from the lateral canal and are least likely to come from the anterior canal.  相似文献   

20.
Summary Caffeine is a potent inhibitor of cell plate formation in dividing plant cells. Previous studies living cells reveal that the drug always permits the cell plate to arise and grow normally until about 80% complete, but then causes it to break down. In the present investigation we examine this formation/degradation cycle at the ultrastructure level. Our results show that during the formation phase the caffeine treated plate is indistinguishable from untreated controls. Phragmoplast microtubules arise and align in the interzone, Golgi vesicles are produced and aggregate in a line that defines the young cell plate, and considerable fusion of these vesicles occurs to form islands of plate material. However, under the influence of caffeine these islands do not fuse to form the enlarged lamellar expanses characteristic of maturing cell plates. Instead, the partially fused material reverts to small vesicles which appear to become resorbed by the cellular membrane systems. The resorption process continues leaving no evidence of the previously developing plate, although occasionally we observe a stub of fused vesicles attached to the parent wall. Following cell plate disintegration the reformed nuclei move close together and occupy the central region of the cell. These observations focus attention on the consolidation phase of cell plate formation as the one being maximally affected by caffeine.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号