首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatocyte growth factor/scatter factor (HGF/SF) is a potent mitogen, motogen, and morphogen for epithelial cells expressing its tyrosine kinase receptor, the c-met proto-oncogene product, and is required for normal development in the mouse. Inappropriate stimulation of Met signal transduction induces aberrant morphogenesis and oncogenesis in mice and has been implicated in human cancer. NK1 is a naturally occurring HGF/SF splice variant composed of only the amino terminus and first kringle domain. While the biological activities of NK1 have been controversial, in vitro data suggest that it may have therapeutic value as an HGF/SF antagonist. Here, we directly test this hypothesis in vivo by expressing mouse NK1 in transgenic mice and comparing the consequent effects with those observed for mice carrying an HGF/SF transgene. Despite robust expression, NK1 did not behave as an HGF/SF antagonist in vivo. Instead, NK1-transgenic mice displayed most of the phenotypic characteristics associated with HGF/SF-transgenic mice, including enlarged livers, ectopic skeletal-muscle formation, progressive renal disease, aberrant pigment cell localization, precocious mammary lobuloalveolar development, and the appearance of mammary, hepatocellular, and melanocytic tumors. And like HGF/SF-transgenic livers, NK1 livers had higher levels of tyrosine-phosphorylated complexes associated with Met, suggesting that the mechanistic basis for the effects of NK1 overexpression in vivo was autocrine activation of Met. We conclude that NK1 acts in vivo as a partial agonist. As such, the efficacy of NK1 as a therapeutic HGF/SF antagonist must be seriously questioned.  相似文献   

2.
3.
Strategies that antagonize growth factor signaling are attractive candidates for the biological therapy of brain tumors. HGF/NK2 is a secreted truncated splicing variant and potential antagonist of scatter factor/hepatocyte growth factor (SF/HGF), a multifunctional cytokine involved in the malignant progression of solid tumors including glioblastoma. U87 human malignant glioma cells that express an autocrine SF/HGF stimulatory loop were transfected with the human HGF/NK2 cDNA and clonal cell lines that secrete high levels of HGF/NK2 protein (U87-NK2) were isolated. The effects of HGF/NK2 gene transfer on the U87 malignant phenotype were examined. HGF/NK2 gene transfer had no effect on 2-dimensional anchorage-dependent cell growth. In contrast, U87-NK2 cell lines were approximately 20-fold less clonogenic in soft agar and approximately 4-fold less migratory than control-transfected cell lines. Intracranial tumor xenografts derived from U87-NK2 cells grew much slower than controls. U87-NK2 tumors were approximately 50-fold smaller than controls at 21 days post-implantation and HGF/NK2 gene transfer resulted in a trend toward diminished tumorigenicity. This report shows that the predominant effect of transgenic HGF/NK2 overexpression by glioma cells that are autocrine for SF/HGF stimulation is to inhibit their malignant phenotype.  相似文献   

4.
The addition of exogenous hepatocyte growth factor (HGF)/scatter factor (SF) to MDCK epithelial cells results in fibroblastic morphology and cell motility. We generated HGF/SF producing MDCK cells by transfection with an expression plasmid containing human HGF/SF cDNA. Production of HGF/SF by these cells induced a change from an epithelial to a fibroblastic morphology and increased cell motility. In addition, the HGF/SF producing cells acquired efficient anchorage-independent growth in soft agar but did not form tumors in nude mice. The morphological change and the stimulation of the anchorage-independent growth were prevented by anti-HGF/SF antibody, suggesting that the factor is secreted and then exerts its effects through cell surface receptors.  相似文献   

5.
Hepatocyte growth factor/scatter factor (HGF/SF) is a pleiotropic effector of cells expressing the Met tyrosine kinase receptor. Although HGF/SF is synthesized by mesenchymal cells and acts predominantly on epithelial cells, we have recently demonstrated that human sarcoma cell lines often inappropriately express high levels of Met and respond mitogenically to HGF/SF. In the present report we show that HGF/SF-Met signalling in the human leiomyosarcoma cell line SK-LMS-1 enhances its in vivo tumorigenicity, an effect for which the mitogenicity of this signalling pathway is likely to play a role. In addition, we found that HGF/SF-Met signalling dramatically induces the in vitro invasiveness and in vivo metastatic potential of these cells. We have studied the molecular basis by which HGFSF-Met signalling mediates the invasive phenotype. A strong correlation has previously been demonstrated between the activation of the urokinase plasminogen activator (uPA) proteolysis network and the acquisition of the invasive-metastatic phenotype, and we show here that HGF/SF-Met signalling significantly increases the protein levels of both uPA and its cellular receptor in SK-LMS-1 cells. This results in elevated levels of cell-associated uPA and enhanced plasmin-generating ability by these cells. These studies couple HGF/SF-Met signalling to the activation of proteases that mediate dissolution of the extracellular matrix-basement membrane, and important property for cellular invasion-metastasis.  相似文献   

6.
HGF/SF and its receptor (Met) are principal mediators of mesenchymal-epithelial interactions in several different systems and have recently been implicated in the control of hair follicle (HF) growth. We have studied their expression patterns during HF morphogenesis and cycling in C57BL/6 mice, whereas functional hair growth effects of HGF/SF were assessed in vivo by analysis of transgenic mice and in skin organ culture. In normal mouse skin, follicular expression of HGF/SF and Met was strikingly localized: HGF/SF was found only in the HF mesenchyme (dermal papilla fibroblasts) and Met in the neighboring hair bulb keratinocytes. Both HGF/SF and Met expression peaked during the initial phases of HF morphogenesis, the stage of active hair growth (early and mid anagen), and during the apoptosis-driven HF regression (catagen). Met+ cells in the regressing epithelial strand appeared to be protected from undergoing apoptosis. Compared to wild-type controls, transgenic mice overexpressing HGF/SF under the control of the MT-1 promoter had twice as many developing HF and displayed accelerated HF development on postnatal day 3. They also showed significant catagen retardation on P17. In organ culture and in vivo, HGF/SF i.c. resulted in a significant catagen retardation. These results demonstrate an important role of HGF/SF and Met in murine hair growth control and suggest that Met-mediated signaling might be exploited for therapeutic manipulation of human hair growth disorders.-Lindner, G., Menrad, A., Gherardi, E., Merlino, G., Welker, P., Handjiski, B., Roloff, B., Paus, R. Involvement of hepatocyte growth factor/scatter factor and Met receptor signaling in hair follicle morphogenesis and cycling.  相似文献   

7.
Depending on the target cells and culture conditions, scatter factor/hepatocyte growth factor (SF/HGF) mediates several distinct activities, i.e., cell motility, proliferation, invasiveness, tubular morphogenesis, angiogenesis, or cytotoxicity. A small isoform of SF/HGF encoded by a natural splice variant, which consists of the NH2-terminal hairpin structure and the first two kringle domains but not the protease homology region, induces cell motility but not mitogenesis. Two types of SF/HGF receptors have recently been discovered in epithelial cells, the high affinity c-Met receptor tyrosine kinase, and low affinity/high capacity binding sites, which are probably located on heparan sulfate proteoglycans. In the present study, we have addressed the question whether the various biological activities of SF/HGF are transduced into cells by a single type of receptor. We have here examined MDCK epithelial cells transfected with a hybrid cDNA encoding the ligand binding domain of the nerve growth factor (NGF) receptor and the membrane-spanning and tyrosine kinase domains of the Met receptor. We demonstrate that all biological effects of SF/HGF upon epithelial cells such as the induction of cell motility, proliferation, invasiveness, and tubular morphogenesis can now be triggered by the addition of NGF. Thus, it is likely that all known biological signals of SF/HGF are transduced through the receptor tyrosine kinase encoded by the c-Met protooncogene.  相似文献   

8.
《The Journal of cell biology》1995,131(6):1573-1586
Hepatocyte growth factor/scatter factor (HGF/SF) is the mesenchymal ligand of the epithelial tyrosine kinase receptor c-Met. In vitro, HGF/SF has morphogenic properties, e.g., induces kidney epithelial cells to form branching ducts in collagen gels. Mutation of the HGF/SF gene in mice results in embryonic lethality due to severe liver and placenta defects. Here, we have evaluated the morphogenic activity of HGF/SF with a large variety of epithelial cells grown in three- dimensional collagen matrices. We found that HGF/SF induces SW 1222 colon carcinoma cells to form crypt-like structures. In these organoids, cells exhibit apical/basolateral polarity and build a well- developed brush border towards the lumen. Capan 2 pancreas carcinoma cells, upon addition of HGF/SF, develop large hollow spheroids lined with a tight layer of polarized cells. Collagen inside the cysts is digested and the cells show features of pancreatic ducts. HGF/SF induces EpH4 mammary epithelial cells to form long branches with end- buds that resemble developing mammary ducts. pRNS-1-1 prostate epithelial cells in the presence of HGF/SF develop long ducts with distal branching as found in the prostate. Finally, HGF/SF simulates alveolar differentiation in LX-1 lung carcinoma cells. Expression of transfected HGF/SF cDNA in LX-1 lung carcinoma and EpH4 mammary epithelial cells induce morphogenesis in an autocrine manner. In the cell lines tested, HGF/SF activated the Met receptor by phosphorylation of tyrosine residues. These data show that HGF/SF induces intrinsic, tissue-specific morphogenic activities in a wide variety of epithelial cells. Apparently, HGF/SF triggers respective endogenous programs and is thus an inductive, not an instructive, mesenchymal effector for epithelial morphogenesis.  相似文献   

9.
The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.  相似文献   

10.
Basic fibroblast growth factor (bFGF) together with other pleiotropic factors plays an important role in many complex physiological processes such as embryonic development, angiogenesis, and wound repair. Among these factors, hepatocyte growth factor/scatter factor (HGF/SF) which is secreted by cells of mesodermal origin exerts its mito- and motogenic activities on cells of epithelial and endothelial origin. Knowledge of the regulatory mechanisms of HGF/SF may contribute to the understanding of its role in physio-pathological processes. We observed that the secretion of HGF/SF by MRC-5 cells and by other fibroblast-derived cell cultures in conditioned media was enhanced by exposure to bFGF. HGF/SF was measured by the scatter assay, a bioassay for cell motility, and was further characterized by Western blot analysis with anti-HGF/SF antibodies. Exposure of MRC-5 cultures to 10 ng/ml of bFGF resulted already 6 h posttreatment in a threefold higher amount of scatter factor secreted into the medium as compared to untreated cultures. HGF/SF secretion was sustained after bFGF treatment for the following 72 h when increased amounts of HGF/SF were detected both in conditioned media as well as associated to the extracellular matrix. The secretion of HGF/SF in cell supernatants increased dose dependently upon treatment with bFGF starting from basal levels of 6 U/ml and reaching 27 U/ml at 30 ng/ml bFGF, plateauing thereafter. Upregulation of HGF/SF by IL-1, already described by others, was confirmed in this study. Based on our findings an articulated interaction can be speculated for bFGF, HGF/SF, and IL-1, e.g., in tissue regeneration during inflammatory processes or in wound healing. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional cytokine that is involved in many normal as well as pathological conditions. HGF/NK1, a splice variant of HGF/SF, has been reported to have either antagonistic or agonistic effects with regard to c-Met signaling depending on the cell type. In these experiments, we have determined that HGF/NK1 is a potent mitogen for rat hepatocytes in culture. Furthermore, we have found that coagulation factor Xa (fXa) is capable of cleaving HGF/NK1 and single chain HGF/SF (scHGF/SF). The products resulting from cleavage of HGF/NK1 or scHGF/SF by fXa appear as single bands under non-reducing conditions. The reaction products from the digestion of HGF/NK1 by fXa were separated under reducing conditions, and the cleavage site, as determined by N-terminal sequencing, was located C-terminal to arginine 134. Previous work established that the heparin-binding domain for HGF/SF is located in the N domain of HGF/SF. Additionally, the dimerization of the HGF/SF receptor (c-Met) by the ligand HGF/NK1 is facilitated by heparin and related sulfonated sugars on the cell surface, whereas heparin is not required for HGF/SF-mediated dimerization. Cleavage of single chain HGF/SF or HGF/NK1 by factor Xa does not alter the affinity of the respective molecules for heparin, but it did variably affect the associated mitogenic activity of these factors. The associated mitogenic activity of HGF/NK1 was reduced by more than 90%, whereas the mitogenic activity of scHGF/SF was unaffected. This suggests mandatory maintenance of a steric interaction of the N domain and the first kringle domain for HGF/NK1 to act as an agonist for rat hepatocyte growth but is not required by full-length HGF/SF.  相似文献   

12.
Hepatocyte growth factor (HGF) inhibits acute liver injury. NK2 acts as an antagonist to HGF in vitro, but its in vivo function has reached no consensus conclusions. We have investigated in vivo effects of HGF and NK2 on CCl4-induced acute liver injury. Elevation of the serum alanine aminotransferase level and extension of centrilobular necrosis were inhibited in HGF transgenic mice but were promoted in NK2 transgenic mice. Hepatocyte proliferation after liver injury was not inhibited in NK2 transgenic mice. Thus, this study indicates that HGF inhibits liver injury, and NK2 antagonizes HGF on liver injury, however, NK2 may not antagonize HGF on hepatocyte proliferation.  相似文献   

13.
The extracellular protease urokinase is known to be crucially involved in morphogenesis, tissue repair and tumor invasion by mediating matrix degradation and cell migration. Hepatocyte growth factor/scatter factor (HGF/SF) is a secretory product of stromal fibroblasts, sharing structural motifs with enzymes of the blood clotting cascade, including a zymogen cleavage site. HGF/SF promotes motility, invasion and growth of epithelial and endothelial cells. Here we show that HGF/SF is secreted as a single-chain biologically inactive precursor (pro-HGF/SF), mostly found in a matrix-associated form. Maturation of the precursor into the active alpha beta heterodimer takes place in the extracellular environment and results from a serum-dependent proteolytic cleavage. In vitro, pro-HGF/SF was cleaved at a single site by nanomolar concentrations of pure urokinase, generating the active mature HGF/SF heterodimer. This cleavage was prevented by specific urokinase inhibitors, such as plasminogen activator inhibitor type-1 and protease nexin-1, and by antibodies directed against the urokinase catalytic domain. Addition of these inhibitors to HGF/SF responsive cells prevented activation of the HGF/SF precursor. These data show that urokinase acts as a pro-HGF/SF convertase, and suggest that some of the growth and invasive cellular responses mediated by this enzyme may involve activation of HGF/SF.  相似文献   

14.
Hepatocyte growth/scatter factor (HGF/SF) is a pleiotropic cytokine originally identified as a potent mitogen for rat hepatocytes. Two HGF/SF knockout mouse models have been reported, both of which exhibit developmental abnormalities causing embryonic lethality. To circumvent this limitation, we created a mouse conditionally deficient in liver expression of HGF/SF to specifically investigate the role of this mitogen in the process of adult liver regeneration. Gene targeting technology was used to generate a mouse with loxP sites flanking exon 5 of the HGF/SF gene (ex5-flox). In the absence of cre recombinase activity, mice homozygous for ex5-flox were indistinguishable from wild-type littermates. To ablate HGF/SF gene expression in vitro, primary hepatocytes established from homozygous HGF(ex5-flox) mice were infected with a recombinant adenoviral vector coding for cre recombinase (AdCre1). PCR analyses of genomic DNA demonstrated greater than 90% ablation of the ex5-floxed gene sequence. In vivo, HGF(ex.5-flox) mice were administered AdCre1 vector and the ablation of the HGF gene confirmed by Southern blot analysis. To induce liver regeneration, mice were injected with the hepatotoxin carbon tetrachloride. The regenerative capacity of hepatocytes in mice administered cre recombinase was shown to be significantly reduced when compared with mice injected with an adenovirus expressing LacZ. A similar reduction in hepatocyte regeneration was observed in HGF(ex.5.flox) mice carrying the cre transgene under the control of the interferon-inducible (pI:pC) Mx1 promoter, as an alternative strategy to ablate the HGF/SF gene in liver. Our results confirm the mitogenic role of HGF/SF in liver regeneration.  相似文献   

15.
The growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF) and its receptor MET, the tyrosine kinase encoded by the c-MET proto-oncogene, exert major roles in cancer invasion and metastasis and are key targets for therapy. NK1 is an alternative spliced variant of HGF/SF that consists of the N-terminal (N) and first kringle (K1) domains and has partial agonistic activity. NK1 crystallises as a head-to-tail dimer with an extensive inter-protomeric interface resulting from contacts between the two short interdomain linkers and reciprocal contacts between the N and K1 domains. Here we show that a subset of mutants at the NK1 dimer interface, such as the linker mutants Y124A or N127A or the kringle mutant V140A:I142A, bind the MET receptor with affinities comparable to wild-type NK1 but fail to assemble a dimeric, signalling competent NK1-MET complex. These NK1 variants have no detectable agonistic activity on, behave as bona fide receptor antagonists by blocking cell migration and DNA synthesis in target cells and have strong prospects as therapeutics for human cancer.  相似文献   

16.
Hepatocyte growth factor (HGF), otherwise known as scatter factor (SF), has been demonstrated over the past decade to elicit a number of functions that may be tumorigenic, and enhance the invasive/metastatic nature of cancer cells. Clinical studies have also demonstrated that HGF/SF, together with its receptor, cMET, is closely related to the disease progression and prognosis of patients with cancer. The past few years have seen the identification of numerous inhibitors and antagonists to the action of HGF/SF. These factors have demonstrated a possible role in minimising the action of HGF/SF on cancer cells, and may be of therapeutic value in the future. This article overviews the activators, inhibitors, and antagonists to HGF/SF and discusses the possible implications in cancer therapy.  相似文献   

17.
《The Journal of cell biology》1995,129(5):1411-1419
Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.  相似文献   

18.
Melanins are an important factor determining the vulnerability of mammalian skin to UV radiation and thus to UV-induced skin cancers. Transgenic mice overexpressing hepatocyte growth factor/scatter factor (HGF/SF) have extra-follicular dermal melanocytes, notably in the papillary upper dermis, and are susceptible to UV-induced melanoma. Pigmented HGF/SF neonatal mice are more susceptible than albino HGF/SF animals to UVA -induced melanoma, indicating an involvement of melanin in melanoma formation. This raises the question of the effect of transgenic HGF/SF on melanization. We developed a methodology to accurately quantitate both the production of melanin and the efficiency of melanogenesis in normal, and HGF/SF transgenic mice in vivo. Skin and hair shafts of 5 day old and adult (3 week old) C57BL/6-HGF/SF and corresponding C57BL/6 wild type mice were investigated by electron paramagnetic resonance spectroscopy (EPR) to quantitate melanin, by transmission electron microscopy (TEM) for the presence of melanosomes, and by standard histology and by Western blotting and zymography to determine the expression and activity of melanogenesis-related proteins. Eumelanin but no phaeomelanin was detected in transgenic C57BL/6-HGF and C57BL/6 wild type mice. Transgenic HGF/SF overexpression did not change the type of melanin produced in the skin or hair, did not affect the terminal content of melanin production in standard samples of hair and did not influence hair cycle/morphogenesis-related changes in skin thickness. No melanocytes were found in the epidermis and no melanosomes were found in epidermal keratinocytes. HGF/SF transgenic mice thus lack the epidermal melanin UV-protection found in constitutively dark human skin. We conclude that melanocytes in the HGF/SF transgenic mouse, particularly in the papillary dermis, are vulnerable to UVA which interacts with eumelanin but not phaeomelanin to induce melanoma.  相似文献   

19.
Hepatocyte growth factor/scatter factor (HGF/SF) plays a crucial role in cancer cell migration, matrix adhesion, invasion, and angiogenesis, via the phosphorylation of the c-met tyrosine kinase. This study examined the ability of NK4, a recently discovered HGF/SF variant, to inhibit the influence of HGF/SF on cell-matrix interaction, paxillin phosphorylation, and invasion of prostate cancer cells. HGF/SF was shown to dramatically enhance tumour cell motility, invasion, cell-matrix adhesion, together with an increase in the degree of paxillin phosphorylation and formation of focal adhesion complexes. However, these HGF/SF-induced effects were suppressed by the presence of NK4. NK4 effectively inhibited the degree of HGF/SF-induced paxillin phosphorylation and matrix adhesion. As a consequence, the matrix invasion of these prostate cancer cells was also suppressed by NK4. In conclusion, this study shows that these HGF/SF-enhanced events, which are critical steps in metastasis, can be inhibited through the addition of NK4, thus warranting further in vivo studies on the implication of NK4 as a potential antimetastasis agent in prostate cancer.  相似文献   

20.
Inappropriate expression of the c-met-protooncogene product (Met) and/or of its ligand, hepatocyte growth factor/scatter factor (HGF/SF), has been correlated with poor prognosis in a variety of human solid tumors. We are developing animal models for nuclear imaging of Met and HGF/SF expression in tumors in vivo. We radioiodinated a mixture of monoclonal antibodies (MAbs) that bind to human HGF/SF and to the external ligand-binding domain of human Met, and then injected the I-125-MAb mixture intravenously into mice bearing tumors either autocrine for human HGF/SF and human Met or autocrine-paracrine for murine HGF/SF and murine Met. Serial total body gamma camera images were obtained, and regional activity was determined by quantitative region-of-interest (ROI) analysis. Tumors autocrine for human HGF/SF and Met demonstrated significantly more rapid uptake and more rapid clearance of the I-125-MAb mixture than tumors expressing one or both murine homologues, reaching a mean tumor to total body activity ratio of > 0.3 by 1 day postinjection. We conclude that radioimmunodetection of tumors autocrine for human HGF/SF and Met is feasible with an I-125-MAb mixture reactive against the ligand-receptor pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号