首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Depolarization of tomato leaf cells by oligogalacturonide elicitors   总被引:5,自引:0,他引:5  
The electrical potential difference (Em) across the plasma membrane of tomato leaf mesophyll cells consists of a cyanide-sensitive component, presumably produced by an H+-ATPase, and a cyanide-insensitive component. Variation of Em between different batches of tissue is mainly caused by variation in the cyanide-sensitive component. Oligogalacturonide elicitors that induce the synthesis of proteinase inhibitors in tomato seedlings depolarize the Em of tomato leaf mesophyll cells. This depolarization closely resembles that caused by cyanide: they are of similar magnitude and vary in a similar manner with variation in the initial Em of different batches of tissue. Treatments with cyanide and with the elicitors have similar effects on the small depolarization caused by KCl at 10 mol m?3. The results suggest that the elicitors depolarize Em by inhibiting the plasma membrane H+-ATPase, but that the detailed mechanism of inhibition by the elicitors is different from that caused by cyanide.  相似文献   

2.
Suspension-cultured cells of Lycopersicon peruvianum L. reacted to the presence of mechanically damaged cells with a transient alkalinization of their culture medium. This response resembled the alkalinization observed after treatment with fungal signal molecules such as chitin fragments and ergosterol or after application of the protein phosphatase inhibitor calyculin A. When compounds implicated in wound signalling were tested, the 18 amino acid peptide systemin was found to be a potent inducer of the alkalinization response, with a half-maximal activity at concentrations of ~100 pM. The decrease in extracellular H+ was paralleled by an increase of K+, and induction of both ion fluxes was blocked by the protein kinase inhibitor K-252a. Systemin also caused rapid increases in the activities of 1-aminocyclopropane-1-carboxylate (ACC) synthase and phenylalanine ammonia-lyase, two other responses commonly observed in cells treated with elicitors. The systemin analogue systemin-Ala17, a reported systemin antagonist in the induction of proteinase inhibitors in tomato plants, provoked a much weaker alkalinization response and did not induce ACC synthase at all. When applied together with authentic systemin, this analogue antagonized induction of both responses, indicating that the perception system for systemin had very similar properties in the L. peruvianum cells as in tomato plants. In conclusion, suspension-cultured L. peruvianum cells provide a convenient and highly sensitive system to study elements of wound response and, in particular, systemin perception.  相似文献   

3.
Light transiently depolarizes the membrane of growing leaf cells. The ionic basis for changes in cell membrane electrical potentials in response to light has been determined separately for growing epidermal and mesophyll cells of the argenteum mutant of pea (Pisum sativum L.). In mesophyll cells light induces a large, transient depolarization that depends on the external Cl concentration, is unaffected by changes in the external Ca2+ or K+ concentration, is stimulated by K+-channel blockers tetraethylammonium (TEA+) and Ba2+, and is inhibited by 3-(3-4-dichlorophenyl)-1,1-dimethylurea (DCMU). In isolated epidermal tissue, light induces a small, transient depolarization followed by a hyperpolarization of the membrane potential. The depolarization is enhanced by increasing the external Ca2+ concentration and by addition of Ba2+, and is not sensitive to DCMU. Epidermal cells in contact with mesophyll display a depolarization resembling the response of the underlying mesophyll cells. The light-induced depolarization in mesophyll cells seems to be mediated by an increased efflux of Cl while the membrane-potential changes in epidermal strips reflect changes in the fluxes of Ca2+ and in the activity of the proton-pumping ATPase.Abbreviations BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid - CCCP carbonylcyanide m-chlorophenylhydrazone - DCMU 3-(3-4-dichlorophenyl)-1,1-dimethylurea - LID e light-induced depolarization in epidermal cells - LID m light-induced depolarization in mesophyll cells - LIH light-induced hyperpolarization - TEA+ tetraethylammonium Ecotrans paper #43. This research was supported by National Science Foundation grants DCB-8903744 and MCB-9220110 to E.V.  相似文献   

4.
Mesophyll K+ retention ability has been recently reported as an important component of salinity stress tolerance in wheat. In order to investigate the role of ROS in regulating NaCl-induced K+ efflux in wheat leaf mesophyll, a series of pharmacological experiments was conducted using MV (methyl viologen, superoxide radical inducer), DPI (an inhibitor of NADPH oxidase), H2O2 (to mimic apoplastic ROS), and EGCG ((−)-Epigallocatechin gallate, ROS scavenger). Mesophyll pre-treatment with 10 μM MV resulted in a significantly higher NaCl-induced K+ efflux in leaf mesophyll, while 50 μM EGCG pre-treatment alleviated K+ leakage under salt stress. No significant change in NaCl-induced K+ efflux in leaf mesophyll was found in specimens pre-treated by H2O2 and DPI, compared with the control. The highest NaCl-induced H+ efflux in leaf mesophyll was also found in samples pre-treated with MV, suggesting a futile cycle between increased H+-ATPase activity and ROS-induced K+ leak. Overall, it is suggested that, under saline stress, K+ efflux from wheat mesophyll is mediated predominantly by non-selective cation channels (NSCC) regulated by ROS produced in chloroplasts, at least in bread wheat.  相似文献   

5.

Main conclusion

Salt stress reduces the ability of mesophyll tissue to respond to light. Potassium outward rectifying channels are responsible for 84 % of Na + induced potassium efflux from mesophyll cells. Modulation in ion transport of broad bean (Vicia faba L.) mesophyll to light under increased apoplastic salinity stress was investigated using vibrating ion-selective microelectrodes (the MIFE technique). Increased apoplastic Na+ significantly affected mesophyll cells ability to respond to light by modulating ion transport across their membranes. Elevated apoplastic Na+ also induced a significant K+ efflux from mesophyll tissue. This efflux was mediated predominately by potassium outward rectifying channels (84 %) and the remainder of the efflux was through non-selective cation channels. NaCl treatment resulted in a reduction in photosystem II efficiency in a dose- and time-dependent manner. In particular, reductions in Fv′/Fm′ were linked to K+ homeostasis in the mesophyll tissue. Increased apoplastic Na+ concentrations induced vanadate-sensitive net H+ efflux, presumably mediated by the plasma membrane H+-ATPase. It is concluded that the observed pump’s activation is essential for the maintenance of membrane potential and ion homeostasis in the cytoplasm of mesophyll under salt stress.  相似文献   

6.
The sulfhydryl group reagent p-chloromecuribenzene sulfonic acid (PCMBS), an established inhibitor of active apoplastic phloem loading of sucrose in several plant species, is shown to be a powerful inhibitor of wound-induced and systemin-induced activation of proteinase inhibitor synthesis and accumulation in leaves of tomato plants (Lycopersicon esculentum cv Castlemart). PCMBS, supplied to young tomato plants through their cut stems, blocks accumulation of proteinase inhibitors in leaves in response to wounding. The application of systemin directly to fresh wounds enhances systemic accumulation of proteinase inhibitors to levels higher than wounding alone. Placed on fresh wounds, PCMBS severely inhibits systemic induction of proteinase inhibitors, in both the presence and absence of exogenous systemin. PCMBS inhibition can be reversed by cysteine, dithiothreitol, and glutathione. Radiolabeled systemin placed on fresh wounds is readily transported from the wounded leaves to upper leaves. However, in the presence of PCMBS, radiolabeled systemin is not transported away from wound sites. Induction of proteinase inhibitor I synthesis by oligouronides (degree of polymerization [almost equal to] 20), linolenic acid, or methyl jasmonate was not inhibited by PCMBS. The cumulative data support a possible role for sulfhydryl groups in mediating the translocation of systemin from wound sites to distal receptor sites in tomato plants and further support a role for systemin as a systemic wound signal.  相似文献   

7.
Potassium ferricyanide (K3Fe[CN]6) was added to aerated and stirred nonbuffered suspensions of mechanically isolated photosynthetically competent Asparagus sprengeri Regel mesophyll cells. Rates of Fe(CN)63− reduction and H+ efflux were measured with or without illumination. On the addition of 1 millimolar Fe(CN)63− to nonilluminated cell suspensions acidification of the medium indicated an H+ efflux of 1.54 nanomoles H+/106 cells per minute. Simultaneous Fe(CN)63− reduction occurred at a rate of 1.55 nanomoles Fe(CN)63−/106 cells per minute. Illumination stimulated these rates 14 to 17 times and corresponding values were 26.1 nanomoles H+/106 cells per minute and 22.9 nanomoles Fe(CN)63−/106 cells per minute. These two processes appeared to be tightly coupled and were rapidly inhibited when illuminated suspensions were transferred to darkness or treated with 1 micromolar 3-(3,4-dichlorophenyl)-1,1 dimethylurea. Addition of 0.1 millimolar diethylstilbestrol eliminated ATP dependent H+ efflux in illuminated or nonilluminated cells but had no influence on Fe(CN)63− dependent H+ efflux. Recent reports indicate that a transmembrane redox system spans the plasma membrane of root cells and is coupled to the efflux of H+. The present report extends these observations to photosynthetically competent mesophyll cells. The results indicate a transport process independent of ATP driven H+ efflux which operates with a H+/e stoichiometry of one.  相似文献   

8.
The movement of systemin, the 18-amino-acid polypeptide inducer of proteinase inhibitors in tomato (Lycopersicon esculentum L.) plants, was investigated in young tomato plants following the application of [14C]systemin to wounds on the surface of leaves. Wholeleaf autoradiographic analyses revealed that [14C]systemin was distributed throughout the wounded leaf within 30 min, and then during the next several hours was transported to the petiole, to the main stem, and to the upper leaves. The movement of [14C]systemin was similar to the movement of [14C]sucrose when applied to leaf wounds, except that sucrose was slightly more mobile than systemin. Analyses of the radioactivity in the petiole phloem exudates at intervals over a 5-h period following the application of [14C]systemin to a wound demonstrated that intact [14C]systemin was present in the phloem over the entire time, indicating that the polypeptide was either stable for long periods in the phloem or was being continually loaded into the phloem from the source leaf. The translocation pathway of systemin was also investigated at the cellular level, using light microscopy and autoradiography. Within 15 min after application of [3H]systemin to a wound on a terminal leaflet, it was found distributed throughout the wounded leaf and was primarily concentrated in the xylem and phloem tissues within the leaf veins. After 30 min, the radioactivity was found mainly associated with vascular strands of phloem tissue in the petiole and, at 90 min, label was found in the phloem of the main stem. Altogether, these and previous results support a role for systemin as a systemic wound signal in tomato plants.The authors acknowledge the Washington State University Electron Microscope Center and staff for their technical advice and collaboration. We also thank Greg Wichelns for growing our plants and Dr. Steven Doares for providing [3H]systemin. This research was supported in part by the Washington State College of Agriculture and Home Economics Project No. 1791 and National Science Foundation grants IBN 9117795 and IBN 9104542  相似文献   

9.
Evidence for a specific glutamate/h cotransport in isolated mesophyll cells   总被引:1,自引:1,他引:0  
Mechanically isolated Asparagus sprengeri Regel mesophyll cells were suspended in 1 millimolar CaSO4. Immediate alkalinization of the medium occured on the addition of 1 millimolar concentrations of l-glutamate (Glu) and its analog l-methionine-d,l-sulfoximine (l-MSO). d-Glu and the l isomers of the protein amino acids did not elicit alkalinization. l-Glu dependent alkalinization was transient and acidification resumed after approximately 30 to 45 minutes. At pH 6.0, 5 millimolar l-Glu stimulated initial rates of alkalinization that varied between 1.3 to 4.1 nmol H+/106 cells·minute. l-Glu dependent alkalinization was saturable, increased with decreasing pH, was inhibited by carbonyl cyanide-p-trichloromethoxyphenyl hydrazone (CCCP), and was not stimulated by light. Uptake of l-[U-14C]glutamate increased as the pH decreased from 6.5 to 5.5, and was inhibited by l-MSO. l-Glu had no influence on K+ efflux. Although evidence for multiple amino acid/proton cotransport systems has been found in other tissues, the present report indicates that a highly specific l-Glu/proton uptake process is present in Asparagus mesophyll cells.  相似文献   

10.
Ionic mechanisms of salt stress perception were investigated by non‐invasive measurements of net H+, K+, Ca2+, Na+, and Cl? fluxes from leaf mesophyll of broad bean (Vicia faba L.) plants using vibrating ion‐selective microelectrodes (the MIFE technique). Treatment with 90 m M NaCl led to a significant increase in the net K+ efflux and enhanced activity of the plasma membrane H+‐pump. Both these events were effectively prevented by high (10 m M ) Ca2+ concentrations in the bath. At the same time, no significant difference in the net Na+ flux has been found between low‐ and high‐calcium treatments. It is likely that plasma membrane K+ and H+ transporters, but not the VIC channels, play the key role in the amelioration of negative salt effects by Ca2+ in the bean mesophyll. Experiments with isotonic mannitol application showed that cell ionic responses to hyperosmotic treatment are highly stress‐specific. The most striking difference in response was shown by K+ fluxes, which varied from an increased net K+ efflux (NaCl treatment) to a net K+ influx (mannitol treatment). It is concluded that different ionic mechanisms are involved in the perception of the ‘ionic’ and ‘osmotic’ components of salt stress.  相似文献   

11.
12.
Vacuole development in cultured evacuolated oat mesophyll protoplasts   总被引:4,自引:0,他引:4  
Oat leaf mesophyll protoplasts were evacuolated and shown to develop acidic vacuoles when cultured for 3 d. Vacuole development was followed by cell wall formation. Developing vacuoles, stained with acridine orange, took the form of a tubular network when viewed by confocal laser scanning microscopy. The tubules expanded and fused to form a series of interconnected vacuoles. When thin sectioned material was examined by transmission electron microscopy, the tubular network appeared as a number of small, expanding vesicles. The vacuolar H+-ATPase, H+-PPase and a membrane integral protein of 23 kDa (VM23) were shown, by Western blotting, to be removed from protoplasts following evacuolation. After 5 d culture the H+-ATPase and H+-PPase, but not VM23, were detectable in microsomal fractions.This study describes, for the first time, successful vacuole regeneration in a monocotyledenous plant. This regeneration follows a similar pattern to that seen in non-cereal protoplasts.  相似文献   

13.
Rb+ uptake into protoplasts isolated from the mesophyll of Pisum sativum L. cv. Dan has been followed at intervals of a few minutes in the light and in the dark. The progress curve for uptake in the dark decreased in slope after about 7 min; in the light, by contrast, the slope increased. This effect was more pronounced at pH 7 than at pH 5.5. The pH profile for uptake in the dark rose with increasing pH: in the light the profile flattened, or even fell somewhat, between pH 5.5 and pH 6.5, then rose again. In the dark the proton uncoupler carbonyl cyanide m-chlorphenylhydrazone (CCCP) had little or no effect, either at pH 5.5 or at pH 7.4; in the light CCCP was strongly inhibitory, particularly at pH 7.4. Increasing concentrations of CCCP produced progressively more and more severe inhibition in the light, but in the dark produced a slight rise in uptake. The ATPase inhibitors quercetin, rutin and diethyl-stilbestrol, as well as arsenate, all depressed uptake in the light, particularly at higher pH Dark uptake was sensitive only at pH 5.5, not at pH 7.4. In marked contrast to the case of methyl-3 glucose, where protoplasts which were switched from light to dark took up sugar at the accelerated light rate for the first 7 min in the dark, a switch to darkness produced a Rb+ uptake rate below that for protoplasts held continuously in the dark. It is inferred that the mechanism of Rb+ uptake does not involve proton cotransport. Information regarding the membrane potential was obtained by following the distribution of tetraphenyl phosphonium (TPP+) between protoplasts and medium. The potential was more negative in the light than in the dark. It was also more negative at pH 7 than at pH 5 both in the light and in the dark. Treatment with CCCP produced no appreciable depolarization within the first 20 min, indicating thet the CCCP inhibition of Rb+ uptake in the light cannot be ascribed to a reduction in potential. An ATP-fueled K+ porter, or K+-H+ antiporter, seems the most likely explanation. The maintenance of the rising pH profile in the dark, despite the presence of a CCCP concentration which drastically inhibits light uptake, suggests that the profile does not depend on the operation of the proton pump.  相似文献   

14.
Keunecke M  Hansen UP 《Planta》2000,210(5):792-800
The isolation of bundle sheath protoplasts from leaves of Zea mays L. for patch clamp whole-cell experiments presents special problems caused by the suberin layer surrounding these cells. These problems were overcome by the isolation technique described here. Two different types of whole-cell response were found: a small response caused by MB-1 (maize bundle sheath conductance type 1) which was instantaneously activated, and another caused by MB-2 (maize bundle sheath conductance type 2) consisting of an instantaneous response (maize bundle sheath K+ instantaneous current type 2; MB-KI2) similar to but stronger than the current through MB-1 plus a small time-dependent outward rectifying component (maize bundle sheath activated outward rectifying current; MB-AOR) with voltage-dependent delayed activation. The occurrence of MB-AOR was often accompanied by a smaller contribution from an inward rectifying channel at negative potentials. Activation of MB-2 required ATP. It is suggested that MB-1 and MB-2 are related to bundle sheath cells with and without direct contact with the xylem vessels. In mesophyll cells, only one type of response caused by MM-2 (maize mesophyll conductance type 2) was found with an instantaneous (maize mesophyll K+ instantaneous current type 2, MM-KI2) and a voltage-dependent delayed component (maize mesophyll activated outward rectifying current, MM-AOR). The most striking difference between bundle sheath and mesophyll cells was the pH dependence of K+ uptake. At pH 7.2, uptake of K+ by MB-2 was identical to that by MM-2 over the whole voltage range. However, acidification stimulated K+ conductance in bundle sheath cells, whereas a decrease was found for MM-2. At pH 6.15, the bundle sheath channel MB-2 had more than a 10-fold higher K+ uptake at positive and negative potentials than MM-2. The channel MB-1, too, was stimulated by low pH. This seems to indicate a putative role for MB-1 and MB-2 in charge balance during uptake of nutrients via cotransport from the xylem into the symplasm. Received: 23 April 1999 / Accepted: 19 July 1999  相似文献   

15.
A role for cytosolic pH (pHi) in hormonal signalling and transport control in plants has long been mooted. Yet, while changes in pHi are a common consequence of hormonal stimuli in plant cells and contribute to hormonally evoked ion channel control, the origins of these changes remain unknown. To examine a possible role for the tonoplast and vacuolar compartment in these events, pHi was measured in the presence of auxins and during cytosolic H+ loading with weak acid in vacuolate and evacuolate protoplasts, both from mesophyll and guard cells of Vicia faba L. Evacuolate protoplasts were obtained following ultracentrifugation on Percoll gradients, and pHi of single protoplasts was recorded in both vacuolate and evacuolate preparations using fluorescence ratio microphotometry and the pH-sensitive dye BCECF. External pH measurements indicated a roughly twofold increase in the rate of net H+ secretion in evacuolate compared with vacuolate protoplasts, and showed that evacuolate protoplasts retained the characteristic stimulation of H+ secretion in the presence of auxin. BCECF fluorescence recording gave resting pHi values near 7.5, and evacuolation had no significant effect on this parameter. Reversible decreases of 0.1–0.2 units in pHi were evoked in vacuolate protoplasts by 10 μM concentrations of the auxins 1-naphthalene acetic acid and 3-indoyl-acetic acid, and not by the inactive (anti-auxin) analogue 2-naphthalene-acetic acid. However, auxin treatments failed to evoke a change in pHi in all but one of 12 experiments with evacuolate protoplasts. Evacuolation also appeared to reduce the transient, dynamic H+ buffering capacity of the protoplasts in the face of acid pHi loads imposed by adding Na+-butyrate to the bath. These results implicate the tonoplast or vacuolar compartment in short-term pHi homeostasis and generation of hormonally evoked H+ signalling in plant cells; they also conform with the view that the decrease in pHiper se is not a primary determinant in the stimulation of H+ secretion by auxin.  相似文献   

16.
Systemin is a wound signaling peptide from tomato that is important for plant defenses against herbivory. The systemin receptor was initially identified as the tomato homolog of the brassinosteroid receptor BRI1, but genetic evidence argued against this finding. However, we found that BRI1 may function as an inappropriate systemin binding protein that does not activate the systemin signaling pathway. Here we provide evidence that systemin perception is localized in a tissue-type specific manner. Mesophyll protoplasts were not sensitive to systemin, while they responded to other elicitors. We hypothesize that the elusive systemin receptor is a protein with high similarity to BRI1 which is specifically localized in vascular tissue like the systemin precursor prosystemin. Binding of systemin to BRI1 may be an artifact of transgenic BRI1-overexpressing plants, but does not take place in wild type tomato cells.Key words: systemin, systemin receptor, brassinosteroids, BRI1, BRL, protoplastsSystemin is thought to be processed from its precursor prosystemin upon insect attack and wounding of tomato leaves. Strong evidence has been gathered for an important role of (pro-)systemin in the activation of defenses against insects, and the underlying signaling pathway has been studied in detail.1 However, the perception of systemin is controversial. Meindl et al.2 and Scheer and Ryan3 identified high affinity, saturable, reversible and specific cell surface binding sites on Solanum peruvianum suspension-cultured cells which are known to be highly sensitive to systemin.4 A purification approach using a photoaffinity systemin analog identified a 160 kDa protein as the systemin receptor (SR160).5 Follow-up studies showed that overexpression of tomato 35S::SR160 in systemin-insensitive tobacco plants conferred systemin sensitivity to tobacco.6 Surprisingly, SR160 turned out to be the tomato homolog of the brassinosteroid receptor BRI1,7 which raised many questions as to the functionality of a receptor for two structurally and functionally diverse ligands. It was then shown in two independent papers that a null mutant for tomato BRI1, cu-3, exhibited a normal response to systemin.8,9 This was strong evidence that SR160/BRI1 does not represent the functional systemin receptor. Our recent data added a peculiar twist to this story. We found that overexpression of tomato BRI1 in tobacco suspension-cultured cells resulted in binding of a fluorescently labeled systemin to the plasma membranes of the transgenic tobacco cells, but not to wild type cells. Surprisingly, this did not result in BRI1-dependent signal transduction and activation of a defense response, although we detected weak BRI1-independent signaling responses to systemin.10 Together with the identification of BRI1 as the systemin receptor by Scheer and Ryan,5 the simplest explanation for this phenomenon is that BRI1 is a systemin binding protein, but not the physiological systemin receptor.Therefore and for other reasons, we suggested that the true systemin receptor may be a protein with very similar properties as BRI1, e.g., a homolog of the BRI1-like (BRL) proteins. The purification strategy employed by Scheer and Ryan5 may have resulted in binding of a photoaffinity-systemin derivative to BRI1 and one or more BRL proteins. Since BRLs and BRI1 have a very similar MW, multiple bands on a SDS-PAGE would not be detectable.Here, we would like to add another aspect of systemin perception. We provide evidence for tissue-specific systemin sensitivity and discuss how this may affect systemin binding to BRI1 and the elusive systemin receptor. Prosystemin is only present in phloem parenchyma cells.11 It can be surmised that the systemin receptor is located close to these cells. Systemin perception results in JA synthesis in companion cells of vascular bundles.12 Since JA or a JA derivative is the most likely phloem-mobile candidate for a systemic long-distance wound signal, it is thought that JA is moving from companion cells into sieve cells to reach distant parts of the plant for upregulation of wound response genes in leaf cells, including mesophyll cells.1315Here, we tested the hypothesis that mesophyll cells lack systemin perception. We generated mesophyll protoplasts from tomato leaf material as well as protoplasts from S. peruvianum suspension-cultured cells, the same cell line that had been used for the purification of SR160/BRI1 and is known to be highly sensitive to systemin. Mesophyll protoplasts showed increased phosphorylation of MAP kinases (MPKs) in response to the elicitors flg22 and chitosan, bacterial and fungal MAMPs, respectively. However, they did not respond to systemin. In contrast, the S. peruvianum protoplasts did respond to systemin and to flg22, demonstrating that the protoplasting procedure did not compromise the systemin perception mechanism (Fig. 1). Immunocomplex kinase assays with specific antibodies against tomato MPK2 produced similar results (data not shown). Since flg22, chitosan and systemin activated the same MPKs (Fig. 1), our data indicate that systemin perception is absent in mesophyll protoplasts. Our leaf protoplasting protocol is a modification of the protocol by Yoo et al. which results in the generation of mesophyll protoplasts.16 In contrast, suspension-cultured cells do not normally represent specific cell types and it is not known why the S. peruvianum cells are highly sensitive to systemin.Open in a separate windowFigure 1Absence of systemin-induced MPK phosphorylation in mesophyll cells. Protoplasts were generated (protocol available upon request) from S. peruvianum suspension-cultured cells and from S. lycopersicum cv. MicroTom leaves. After a 1.5 hour recovery phase on ice, protoplasts were resuspended in WI medium (0.5 M mannitol, 5 mM ME S pH 5.7, 20 mM KCl), recovered for 1 hour in non-stick tubes with constant rotation on a rotary shaker at room temperature, and then treated with either water (con), 10 nM systemin (sys), 100 nM flg22, or 2.5 µg/ml chitosan (from crab shells—chi) for 10 min at room temperature. Protoplasts were analyzed for MPK phosphorylation by immunoblotting using an anti-phospho-ER K antibody (phospho-p44/42 MA PK (Erk1/2) (Thr202/Tyr204); D13.14.4E; Cell Signaling Technology) at a dilution of 1:2,000. This antibody recognizes MPKs that are phosphorylated on either the Thr and Tyr or on only the Thr within the TE Y phosphorylation motif which is conserved among plant and metazoan MPKs. It is known to recognize the tobacco MPKs SIPK and WIPK21 and Arabidopsis MPK6 and MPK3,22 the orthologs of tomato MPK1/2 and MPK3.23 Bands were visualized as described.10 Proteins on membranes were stained with Ponceau S to demonstrate equal loading.Intriguingly, BRL1, BRL2 and BRL3 are expressed in the vasculature and function in vascular pattern formation in Arabidopsis, while BRI1 is ubiquitously expressed in dividing and elongating cells. BRL3 is even specifically expressed in phloem cells.17 This matches the highly specific localization of prosystemin in the phloem parenchyma cells.11,18 The highest BRI1 expression is found in growing parts of young leaves17,19 while prosystemin is specifically present in the phloem parenchyma cells throughout all developmental stages.11 In this context, it is also interesting to note that application of systemin to tomato plants via the cut stem results in rapid and strong MPK activation. In this assay, systemin is delivered to leaf cells via the transpiration stream and therefore present in vascular tissue.20Based on the combined evidence, we propose that the true systemin receptor is a BRL or similar protein which is expressed in phloem cells in the vicinity of the parenchyma cells that express prosystemin, but not in mesophyll cells. Because of the similarity between BRLs and BRI1, BRI1 was erroneously identified as the systemin receptor. Inappropriate binding of systemin to BRI1 is consistent with the high similarity between BRI1 and BRLs. However, because of the tissue-specificity of the systemin signaling pathway, inappropriate binding of systemin to BRI1 may rarely occur in wild type plants and may not pose an interference problem for either systemin or brassinosteroid signaling.  相似文献   

17.
Summary A method is described for isolating mesophyll protoplasts from leaves and secretory cell protoplasts from salt glands of the facultative halophyte, Ceratostigma plumbaginoides (L.). Rates of ATP hydrolysis in both cell types were determined, and levels in secretory cell protoplast preparations were fourfold higher than those in mesophyll protoplast preparations, based on total protein. The rate of ATP hydrolysis was sensitive to azide and vanadate, and stimulated by Triton-X-100. Additionally, immunoblot procedures using an antibody to the plasma membrane H+/ATPase was used to compare ATPase levels of the mesophyll and secretory cell protoplasts. Results indicate that secretory cells have a higher concentration of H+/ATPase than mesophyll cells, consistent with their putative function in salt glands.Abbreviations ATP adenosine triphosphate - BSA bovine serum albumin - DIDS diisothiocyano-2,2'-disulfonic acid stilbene - DNP dinitrophenol - DTT dithiothreitol - FITC fluorescein isothiocyanate - NAD+/NADH nicotinamide adenine dinucleotide - SDS sodium dodecylsulfate  相似文献   

18.
This work investigated the importance of the ability of leaf mesophyll cells to control K+ flux across the plasma membrane as a trait conferring tissue tolerance mechanism in plants grown under saline conditions. Four wheat (Triticum aestivum and Triticum turgidum) and four barley (Hordeum vulgare) genotypes contrasting in their salinity tolerance were grown under glasshouse conditions. Seven to 10‐day‐old leaves were excised, and net K+ and H+ fluxes were measured from either epidermal or mesophyll cells upon acute 100 mM treatment (mimicking plant failure to restrict Na+ delivery to the shoot) using non‐invasive microelectrode ion flux estimation (the MIFE) system. To enable net ion flux measurements from leaf epidermal cells, removal of epicuticular waxes was trialed with organic solvents. A series of methodological experiments was conducted to test the efficiency of different methods of wax removal, and the impact of experimental procedures on cell viability, in order to optimize the method. A strong positive correlation was found between plants' ability to retain K+ in salt‐treated leaves and their salinity tolerance, in both wheat and especially barley. The observed effects were related to the ionic but not osmotic component of salt stress. Pharmacological experiments have suggested that voltage‐gated K+‐permeable channels mediate K+ retention in leaf mesophyll upon elevated NaCl levels in the apoplast. It is concluded that MIFE measurements of NaCl‐induced K+ fluxes from leaf mesophyll may be used as an efficient screening tool for breeding in cereals for salinity tissue tolerance.  相似文献   

19.
An artificial Na+ gradient across the envelope (Na+ jump) enhanced pyruvate uptake in the dark into mesophyll chloroplasts of a C4 plant, Panicum miliaceum (NAD-malic enzyme type) (J Ohnishi, R Kanai [1987] FEBS Lett 219:347). In the present study, 22Na+ and pyruvate uptake were examined in mesophyll chloroplasts of several species of C4 plants. Enhancement of pyruvate uptake by a Na+ jump in the dark was also seen in mesophyll chloroplasts of Urochloa panicoides and Panicum maximum (phosphoenolpyruvate carboxykinase types) but not in Zea mays or Sorghum bicolor (NADP-malic enzyme types). In mesophyll chloroplasts of P. miliaceum and P. maximum, pyruvate in turn enhanced Na+ uptake in the dark when added together with Na+. When flux of endogenous Na+ was measured in these mesophyll chloroplasts preincubated with 22Na+, pyruvate addition induced Na+ influx, and the extent of the pyruvate-induced Na+ influx positively correlated with that of pyruvate uptake. A Na+/H+ exchange ionophore, monensin, nullified all the above mutual effects of Na+ and pyruvate in mesophyll chloroplasts of P. miliaceum, while it accelerated Na+ uptake and increased equilibrium level of chloroplast 22Na+. Measurements of initial uptake rates of pyruvate and Na+ gave a stoichiometry close to 1:1. These results point to Na+/pyruvate cotransport into mesophyll chloroplasts of some C4 plants.  相似文献   

20.
Regulation of H Excretion : EFFECTS OF OSMOTIC SHOCK   总被引:3,自引:3,他引:0       下载免费PDF全文
Osmotic shock, a 15-minute plasmolysis followed by a 15-minute rehydration in the cold, is a nondestructive technique which inhibits fusicoccin-stimulated H+ excretion from oat mesophyll cells (Avena sativa L.). Osmotic shock also causes a loss of intracellular solutes and stimulates H+ uptake, but osmoregulation can still occur, and enhanced H+ uptake is observed only at low external pH. It is concluded that osmotic shock interferes directly with the excretion of H+ rather than affecting only H+ or counter ion uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号