共查询到20条相似文献,搜索用时 0 毫秒
1.
Purification and molecular identification of two protein methylases I from calf brain. Myelin basic protein- and histone-specific enzyme 总被引:7,自引:0,他引:7
Two different molecular species of protein methylases I (S-adenosylmethionine:protein-arginine N-methyltransferase, EC 2.1.1.23), one specific for myelin basic protein (MBP) and the other for histone, have been purified from calf brain to near homogeneity, as discerned by nondenaturing polyacrylamide gel electrophoresis. Although both methylases share some common properties, such as utilization of S-adenosyl-L-methionine as the methyl donor and methylation of protein-bound arginine residues, they are distinctly different from each other in molecular weight and in catalytic, as well as the immunological, properties. The MBP-specific protein methylase I (approximately 500 kDa) methylates MBP preferentially (Km = 2 X 10(-7) M) and histone to a much lesser extent (Km = 1 X 10(-4) M), while the histone-specific methylase I (approximately 275 kDa) methylates histone only. Both methylases exhibit two major subunit bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis: 100 and 72 kDa for the MBP-specific and 110 and 75 kDa for the histone-specific. At 0.5 mM p-chloromercuribenzoate, about 50% of the MBP-specific enzyme remained as active, while most of the histone-specific enzyme activity was lost. In 2 mM guanidine HCl, approximately 90% of the former enzyme activity remained while nearly complete inactivation of the latter enzyme was observed. The enzymes also exhibited quite different inactivation profiles toward high temperature (45-65 degrees C); MBP-enzyme was stable up to 50 degrees C and was rapidly inactivated at higher temperatures with an inflection point at about 57 degrees C. However, under the identical conditions, histone-enzyme was inactivated progressively and linearly in the same temperature range. Finally, Western immunoblot analysis of polyclonal antibodies directed against either enzyme exhibited no cross-reactivity with the other. 相似文献
2.
Myelin basic protein 总被引:1,自引:0,他引:1
3.
T Bellini F Dallocchio D Degani S Spisani R Gavioli S Traniello 《Biochemical and biophysical research communications》1986,141(2):524-527
Myelin basic protein, one of the major membrane protein component of the central nervous system, was used to probe the molecular mechanism of cellular activation. Pre-treatment of human neutrophils with myelin basic protein selectively inhibits the formyl-peptide-induced chemotaxis, without affecting chemotaxis evoked by casein and activated serum. Furthermore, both the degranulation and superoxide anion production stimulated by the chemotactic peptide are not modified by the prior treatment of the neutrophils with myelin basic protein. 相似文献
4.
The substrate specificity of bovine brain myelin basic protein (MBP)-specific protein methylase I (S-adenosyl-L-methionine:protein-L-arginine N-methyltransferase, EC 2.1.1.23), which methylates arginine residues of protein, has been studied using various MBPs, several synthetic peptides and heterogeneous nuclear ribonucleoprotein complex protein (hnRNP). (1) Among MBPs from different species of brain, the carp MBP was found to be the best substrate for MBP-specific protein methylase I. This high degree of methyl acceptability is most likely due to the fact that carp MBP is not in vivo methylated at the arginine residue (Deibler, G.E. and Martenson, R.E. (1973) J. Biol. Chem. 248, 2387-2391) and that the methylatable amino acid sequence is present in this protein. (2) In order to study the minimum chain length of MBP polypeptide which functions as the methyl acceptor, several synthetic polypeptides whose sequences are identical to the region surrounding the residue 107 of bovine MBP (the in vivo methylation site) were synthesized. It was found that the hexapeptide, Gly-Lys-Gly-Arg-Gly-Leu (corresponding to residues 104-109 of bovine MBP), was the shortest methyl accepting peptide, while the tetrapeptide, Gly-Arg-Gly-Leu (corresponding to residues 106-109) was inactive as a substrate. (3) hnRNP protein is known to contain methylarginine at residue 193 (Williams, K.R., Stone, K.L., LoPresti, M.B., Merrill, B.M. and Plank, S.R. (1985) Proc. Natl. Acad. Sci. USA 82, 5666-5670) which is post-translationally modified. Thus, the RNP protein overproduced in Escherichia coli and therefore did not contain methylarginine was examined for its methyl acceptability. It was found that neither MBP-specific nor histone-specific protein methylase I could methylate this methylarginine-less RNP protein. This suggests a possible existence of a distinct protein methylase I specific for this nuclear protein. 相似文献
5.
Studies on myelin basic protein-specific protein methylase I in various dysmyelinating mutant mice 总被引:3,自引:0,他引:3
S Kim M Tuck M Kim A T Campagnoni W K Paik 《Biochemical and biophysical research communications》1984,123(2):468-474
Jimpy mice are dysmyelinating mutants characterized by producing near normal levels of myelin basic protein (MBP) in the brain but failing to incorporate these proteins into the myelin sheath. In this study, the activity of MBP-specific protein-arginine N-methyltransferase (protein methylase I) was studied in the brains of normal and jimpy mice of different ages. The enzyme activity varied little with age in normal mice but in 18 and 21 days-old homozygous jimpy mice the activity was reduced by 50% and 75% respectively from the level of their normal littermates. Interestingly, however, heterozygous jimpy mice who are phenotypically normal and quaking mice (a similar dysmyelinating mutant) showed unaltered enzyme levels. 相似文献
6.
7.
Myelin basic protein induces hexagonal phase formation in dispersions of diacylphosphatidic acid 总被引:2,自引:0,他引:2
31P nuclear magnetic resonance and low-angle X-ray diffraction measurements have shown that the basic protein of myelin caused diacylphosphatidic acid dispersions to change from a lamellar to a hexagonal lipid organisation. Several other basic proteins failed to effect a similar phase change, and had little influence on phospholipid headgroup structure and motion. 相似文献
8.
C K Chan J Ramwani M A Moscarello K C Chan J Ranwani 《Biochemical and biophysical research communications》1988,152(3):1468-1473
Myelin basic protein from normal human brain was ADP-ribosylated with Cholera toxin, but not with Pertussis toxin. It bound azido-GTP at a single site in the N-terminal tetrapeptide at the Gln residue. The binding was considerably reduced when GppNHp was present during azido-GTP binding and totally inhibited when GTP gamma S was present. The relevance of this specific binding is not understood at this time. 相似文献
9.
Myelin basic protein-enhanced fusion of membranes 总被引:2,自引:0,他引:2
Myelin basic protein caused rapid aggregation of vesicles containing acidic phospholipids. Aggregation could be reversed by trypsin digestion of the myelin basic protein. Aggregated vesicles containing gel phase phospholipids or vesicles containing greater than 15 mol% lysolecithin underwent fusion. The extent of fusion was measured by irreversible changes in the light-scattering intensities or diffusion coefficients of the vesicles. Fusion was also measured by the fluorescence quenching which occurred when vesicles containing a covalently bound fluorophore. N-4-nitrobenzo-2-oxa-1,3-diazole, were fused with vesicles containing the covalently bound spin label, 4,4-dimethyl-oxazolidine-N-oxyl. The kinetics of fusion were first order in phospholipid and had half-times of 0.5-5 min depending on lysolecithin composition. This protein-enhanced membrane fusion may provide a valuable model system for studying some types of biological membrane fusions. 相似文献
10.
Myelin basic protein caused rapid aggregation of vesicles containing acidic phospholipids. Aggregation could be reversed by trypsin digestion of the myelin basic protein. Aggregated vesicles containing gel phase phospholipids or vesicles containing greater than 15 mol% lysolecithin underwent fusion. The extent of fusion was measured by irreversible changes in the light-scattering intensities or diffusion coefficients of the vesicles. Fusion was also measured by the fluorescence quenching which occurred when vesicles containing a covalently bound fluorophore, N-4-nitrobenzo-2-oxa-1,3-diazole, were fused with vesicles containing the covalently bound spin label, 4,4-dimethyl-oxazolidine-N-oxyl. The kinetics of fusion were first order in phospholipid and had half-times of 0.5–5 min depending on lysolecithin composition. This protein-enhanced membrane fusion may provide a valuable model system for studying some types of biological membrane fusions. 相似文献
11.
Fluorescence of the single tryptophan residue in myelin basic protein (MBP) was excited directly at 295 nm (red-edge excitation) or at 278 nm which allows, in addition, indirect excitation by resonance energy transfer (RET) from any nearby tyrosine residues. Both red-edge excitation and the RET pathway were collisionally quenched by I- and acrylamide, but not by Cs+ or Co2+, implying that the fluorophore is in an exposed, positively charged environment. The quenching coefficients (K) for I- are 12-15 M-1 at both excitation wavelengths while coefficients for acrylamide are 15 M-1 at 278-nm and 8 M-1 at 295-nm excitation. Chloroheme, cyanoheme, and protoporphyrin IX also quench both red-edge excitation and the RET pathway with apparent quenching coefficients which are (2-5) X 10(4)-fold higher. This suggests that the mechanism of quenching now includes static in addition to collisional processes and thus that heme has a relatively high affinity for MBP. Scatchard analysis of the quenching suggests that chloroheme binds to MBP at two sites with dissociation constants (Kd) of 1.6 X 10(-8) and 2.0 X 10(-7) M and stoichiometries of 0.04:1 and 0.16:1, respectively. The hydrophobic fluorescent probe 4,4'-bis[1-(phenylamino)-8-naphthalenesulfonate] [bis(ANS)] binds to MBP less avidly (Kd = 10(-7) M) and is rapidly displaced by chloroheme (Ki = 2 X 10(-8) M). The affinities of bis(ANS) and heme for MBP, along with the fluorescent amino acid quenching data, demonstrate that a subfraction of MBP molecules contain considerable structural specificity, implying stable long-range interactions in the molecule.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
12.
Myelin basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression 下载免费PDF全文
Replacement of the signal recognition particle (SRP) 7S gene (SCR1) on a replicating plasmid with scr1-1 (G to A at 129 and A to T at 131 in the consensus sequence -GNAR- in the loop of domain III) resulted in temperature sensitivity for growth of cells in which both chromosomal SRP 7S RNA genes were deleted. Pulse-chase immunoprecipitation experiments were done after a shift to non-permissive temperature using the major secreted protein the alkaline extracellular protease (AEP) as a reporter molecule. No untranslocated AEP precursor was detected in a strain with scr1-1 on a plasmid, but the amount of the largest AEP precursor (55 kD) immunoprecipitated as a percentage of total protein synthesized was reduced 68% compared to an isogenic strain with SCR1 on the plasmid. The possibility that an untranslocated precursor was synthesized but not detected because of instability was largely eliminated by detection of a 53-kD untranslocated precursor of a mutated AEP (P17M; methionine replaced proline in the second position of the pro-peptide) which chased to the 55-kD translocated AEP precursor. Thus, SRP has a role in the biosynthesis of AEP. Possibly, the scr1-1 mutation does not affect signal recognition or translational arrest but instead results in maintenance of translational arrest of AEP synthesis. The results also suggest that AEP can be translocated in vivo either co-translationally in which SRP is at least involved in biosynthesis or posttranslationally without SRP involvement. 相似文献
13.
14.
The activity and localization of large-conductance Ca2+ -activated K+ (BKCa) channels are known to be modulated by several different proteins. Although many binding partners have been identified via yeast two-hybrid screening, this method may not detect certain classes of interacting proteins such as low affinity binding proteins or multi-component protein complexes. In this study, we employed mass spectrometry to identify proteins that interact with BKCa channels. We expressed and purified the 'tail domain' of the rat BKCa channel alpha-subunit, a 54-kDa region that is crucial for expression and functional activity of the channel. Using rat brain lysate and purified 'tail domain', we identified several novel proteins that interact with the BKCa channel. These included the myelin basic protein (MBP), upon which we performed subsequent biochemical and electrophysiological studies. Interaction between the BKCa channel and MBP was confirmed in vivo and in vitro. MBP co-expression affected the Ca2+ -dependent activation of the BKCa channel by increasing its Ca2+ sensitivity. Moreover, we showed that calmodulin (CaM) interacts with the BKCa channel via MBP. Since CaM is a key regulator of many Ca2+ -dependent processes, it may be recruited by MBP to the vicinity of the BKCa channel, modulating its functional activity. 相似文献
15.
Myelin basic protein gene expression in quaking, jimpy, and myelin synthesis-deficient mice 总被引:13,自引:0,他引:13
Jimpy (jp), myelin synthesis-deficient (jpmsd), and quaking (qk) are mutations which affect myelination to different degrees in the mouse central nervous system (CNS). Total messenger RNA (mRNA) and myelin basic protein (MBP)-specific mRNA from brains of these three mutants have been analyzed by in vitro translation and immunoprecipitation with antibody to MBP. The results indicate that the three mutations do not affect the level of total MBP-specific mRNA in the CNS but do affect the relative proportions of the various MBP-related translation products encoded in vitro. In each case the proportions of 14K and 12K Mr MBP-related translation products are reduced and the proportions of 21.5K, 18.5K, and 17K Mr MBP-related translation products are increased relative to wild type. This effect is most pronounced in jp, less so in jpmsd, and least pronounced in qk animals. The MBP-related polypeptides that accumulate in vivo have also been analyzed in the three mutants by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by immunoblotting with antibody to MBP. The levels of all the major MBP-related polypeptides that accumulate in vivo are reduced in all three mutations. The reduction is most pronounced in jp, less in jpmsd, and least pronounced in qk animals. These results indicate that the jp, jpmsd, and qk mutations exhibit qualitatively similar phenotypic effects on MBP gene expression but the magnitude of the effect is proportional to the extent of hypomyelination in each mutant. 相似文献
16.
J A Villarreal W Vale M Brown M Butcher P Brazeau C Rivier R Burgus 《Biochemical and biophysical research communications》1976,70(2):551-558
A protein has been isolated from ovine hypothalamus on the basis of its ability to stimulate release of growth hormone by cultures of dispersed pituitary cells. This protein has been identified as being myelin basic protein. With no similar biological activity , myelin basic protein is thus to be recognized as a potentially interfering substance in any search for the physiological growth hormone releasing factor using assay systems. 相似文献
17.
Myelin basic proteins (MBPs) from 6-day-old, 10-day-old, 20-day-old and adult normal mouse brain were compared with those from 20-day-old jimpy (dysmyelinating mutant) mouse brain to determine the effect of reduced levels of proteolipid protein (PLP) on MBPs. Alkaline-urea-gel electrophoresis showed that 6-day-old and 10-day-old normal and jimpy MBPs lacked charge microheterogeneity, since C8 (the least cationic of the components; not be confused with complement component C8) was the only charge isomer present. In contrast, MBPs from 20-day-old and adult normal mouse brain displayed extensive charge microheterogeneity, having at least eight components. A 32 kDa MBP was the major isoform observed on immunoblots of acid-soluble protein from 6-day-old and 10-day-old normal and 20-day-old jimpy mouse brain. There were eight bands present in 20-day-old and adult normal mouse brain. Purified human MBP charge heteromers C1, C2, C3 and C4 reacted strongly with rat 14 kDa MBP antiserum, whereas the reaction with human C8 was weak. This suggested that MBPs from early-myelinating and jimpy mice did not react to MBP antisera because C8 was the major charge isomer in these animals. Purification of MBPs from normal and jimpy brain by alkaline-gel electrophoresis showed that both normal and jimpy MBPs have size heterogeneity when subjected to SDS/PAGE. However, the size isoforms in normal mouse brain (32, 21, 18.5, 17 and 14 kDa) differed from those in jimpy brain (32, 21, 20, 17, 15 and 14 kDa) in both size and relative amounts. Amino acid analyses of MBPs from jimpy brain showed an increase in glutamic acid, alanine and ornithine, and a decrease in histidine, arginine and proline. The changes in glutamic acid, ornithine and arginine are characteristic of the differences observed in human C8 when compared with C1. 相似文献
18.
A nucleoplasmic histone kinase activity was isolated from livers of adult rats and purified 39-fold compared with whole nuclei by ultracentrifugation of the nuclear extract and Sephadex G-200 gel filtration in the presence of cyclic AMP. Analysis by polyacrylamide-gel electrophoresis as well as by gel filtration indicates a mol.wt. of approx. 60,000 for the catalytic subunit and 130000-150000 for the cyclic AMP-binding activity. The purified enzyme displays a 20-fold greater preference for histone fractions 1 and 2b than for any non-histone substrate, including alpha-casein. Endogenous protein in the preparation is not appreciably phosphorylated. The unfractioned enzyme is stimulated significantly by cyclic GMP, cyclic IMP and dibutyryl cyclic AMP as well as by cyclic AMP. The catalytic reaction requires Mg2+ (Km 1.9mM) and ATP (Km 15.4 micron). Half-maximal activity of the enzyme is observed with histone 2b at 12micron and histone 1 at a higher substrate concentration. The pH optima are 6.1 and 6.5 with histones 2b and 1 respectively. This nuclear protein kinase appears to be distinct from other nuclear enzymes that have been reported, on the basis of histone specificity, univalent-salt-sensitivity, pH optima and nuclear location. However, the enzyme possesses many properties similar to those of the cytoplasmic kinases, including cyclic AMP-dependence, Mg2+ and ATP affinities and pH optima. It differs from cytoplasmic protein kinase type I, the major form in the liver, with respect to bivalent-cation effects and response to the heat-stable protein kinase inhibitor protein isolated from ox heart. 相似文献
19.
Myelin basic protein undergoes a broader range of modifications in mammals than in lower vertebrates
Zhang C Walker AK Zand R Moscarello MA Yan JM Andrews PC 《Journal of proteome research》2012,11(10):4791-4802
Myelin basic protein (MBP) is an important component of the myelin sheath surrounding neurons, and it is directly affected in demyelinating diseases. MBP contains a relatively large number of post-translational modifications (PTMs), which have been reported to play a role in multiple sclerosis, while MBPs from lower vertebrates have been reported to be incapable of inducing multiple sclerosis or allergic encephalitis. This study reveals the extent of differences in PTM patterns for mammalian and nonmammalian MBPs. This included intact mass and de novo sequence analysis of approximately 85% of rattlesnake MBP, the first reptile MBP to be characterized, and of bovine MBP. We identified 12 PTMs at 11 sites in the five bovine MBP charge components, which include both previously reported and novel modifications. The most notable modification is an acetylation of lysine 121. Other modifications found in bovine MBP include N-terminal acetylation in components C1, C2, and C3; oxidation of methionine 19 in all five components; all charge isomers having both a mono- and dimethylated (symmetric) arginine at position 106; deimination in arginines 23 and 47 found only in component C8b; deimination of arginine 96 and deamidation in glutamine 102 found in components C2, C3, C8a, and C8b; phosphorylation in threonine 97 restricted to charge components C2 and C3; deimination in arginine 161 only found in component C3; deamidation of glutamine 120 was only observed in C3. All four deiminated arginines and one acetylated lysine were first experimentally revealed in this study for bovine MBP. Mascot database searching combined with de novo sequence analysis of rattlesnake MBP provided more than 85% sequence coverage. A few PTMs were also revealed in rattlesnake MBP: mono- and dimethylated Arg, protein N-terminal acetylation, and deiminated Arg. Overall, snake MBP was found to undergo less modification than bovine MBP on the basis of the mass heterogeneity of the intact protein, the bottom-up structure analysis, and the limited complexity of rattlesnake MBP chromatography. The combined data from this study and information from previous studies extend the known MBP PTMs, and PTMs unique to higher vertebrates are proposed. 相似文献