首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The methanothermal reactions of M(CO)6 (M = Mo, W) with Na2S2 gave a series of homonuclear clusters [{M(CO)4}n(MS4)]2− (M=Mo, W; N=1, 2), i.e. (Ph4P)2[(CO)4Mo(MoS4)] (I), (Ph4P)2[(CO)4W(WS4)] (II), (Ph4P)2[(CO)4Mo(MoS4)Mo(CO)4] (III) and (Ph4P)2[(CO)4W(WS4)W(CO)4] (IV). The two dimers, I and II, as well as the two trimers, III and IV, are isostructural to each other, respectively. All compounds crystallize in the triclinic space group with Z=2. The cell dimensions are: a=12.393(8), b=19.303(9), c=11.909(6) Å, =102.39(5), β=111.54(5), γ=73.61(5)°, V=2522(3) Å3 at T=23 °C for I; a=12.390(3), b=19.314(4), c=11.866(2) Å, =102.66(2), β=111.49(1), γ=73.40(2)°, V=2511(1) Å3 at T=23 °C for II; a=11.416(3), b=22.524(4), c=10.815(4) Å, =91.03(2), β=100.57(3), γ=88.96(2)°, V=2733(1) Å3 at T=−100 °C for III, a=11.498(1), b=22.600(4), c=10.864(3) Å, =90.92(2), β=100.85(1), γ=88.58(1)°, V=2771(2) Å3 at T=23 °C for IV. The dimers are each formed by the coordination of the tetrathiometalate as a bidentate chelating ligand to an M(CO)4 fragment while addition of another M(CO)4 fragment to the dimers results in the trimers. All compounds contain both tetrahedral and octahedral metal centers with the formal 6+ and 0 oxidation states, respectively.  相似文献   

2.
The reaction of [Re(NMe)Cl3(PPh3)2] with the pentadentate [N3S2] ligand pyN2H2S2---H2 [2,6-bis(2-mercaptophenylamino)dimethylpyridine] (1) in the presence of triethylamine did not yield the anticipated six-coordinate complex [Re(NMe)(η5-pyN2HS2)] (2), but rather resulted in cleavage of the Re(V)=NMe bond. A novel six-coordinate Re(IV) [N3S]/[NS] complex [Re(η4-SC6H4---2-NCH2---C5H3N---C=NC6H4---2-S)(η2-NHC6H4---2-S)] (4) was thus obtained with the simultaneous coordination of 2-aminothiophenol, a dianionic bidentate [NS] donor resulting from the decomposition of the parent ligand and ligand 3, a dianionic tetradentate [N3S] donor formed by partial self-condensation and subsequent oxidation of the parent ligand 1. Crystal data for 4: C25H18N4S3Re·CH2Cl2, monoclinic, space group P21/n, a=9.255(2) Å, b=11.181(2) Å, c=25.316(4) Å, β=97.434(3)°, V=2587.8(7) Å3 and Z=4.  相似文献   

3.
Cobalt(III) complexes with a thiolate or thioether ligand, t-[Co(mp)(tren)]+ (2), t-[Co(mtp)(tren)]2+ (1Me) and t-[Co(mta)(tren)]2+ (2Me), (mp = 3-mercaptopropionate, MA = 3-(methylthio)propionate and MTA = 2-(methylthio)acetate) have been prepared in aqueous solutions. The crystal structures of 1, 2, 1Me and 2Me were determined by X-ray diffraction methods. The crystal data are as follows, t-[Co(mp)(tren)]ClO4 (1CIO4): monoclinic, P21/n, A = 10.877(8), B = 11.570(4), c = 12.173(7) Å, β = 92.20(5)°, V = 1531(1) Å3, Z = 4 and R = 0.060; t-[Co(ma)(tren)]Cl·3H2O (2Cl·3H2O): monoclinic, P21/n, a = 7.7688(8), B = 27.128(2), C = 7.858(1) Å, β = 100.63(1)°, V = 1627.7(3) Å3, Z = 4 and R = 0.066; (+)465CD-t-[Co(mtp)(tren)](ClO4)2 ((+)465CD-1Me(ClO4)2): orthorhombic, P212121, A = 10.6610(7), B = 11.746(1), C = 15.555(1) Å, V = 1947.9(3) Å3, Z = 4 and R = 0.068; (+)465CD-t-[Co(mta)(tren)](ClO4)2 ((+)465CD-2Me(ClO4)2): orthorhombic, P212121, a = 10.564(1), B = 11.375(1), C = 15.434(2) Å, V = 1854.7(4) Å3, Z = 4 and R = 0.047. All central Co(III) atoms have approximately octahedral geometry, coordinated by four N, one O, and one S atoms. All of the complexes are only isomer, of which the sulfur atom in the didentate-O,S ligands are located at the trans position to the tertiary amine nitrogen atom of tren. 1 and 1Me contain six-membered chelate ring, and 2 and 2Me do five-membered chelate ring in the didentate ligand. The chirality of the asymmetric sulfur donor atom in (+)465CD-1Me is the S configuration and that in (+)465CD-2Me is the R one. The 1H NMR, 13C NMR and electronic absorption spectral behaviors and electrochemical properties of the present complexes are discussed in relation to their stereochemistries.  相似文献   

4.
Three seriesof Rh(I) complexes of the type Tp3R,5RRh(LL), with LL = 2 CO (1), norbornadiene (NBD) (2) and 1,5-cyclooctadiene (COD) (3) and the tris (pyrazolyl)borate (Tp) ligands 3R=5R=Me (a), 3R=CF35R=Me (b); and 3R=5R=CF3 (c) were synthesized and fully characterized by IR and multinuclear NMR spectroscopy. Three isomeric forms were identified in solutions of these complexes: two square-planar isomers with a κ2-Tp3R,5R ligand, the uncoordinated pyrazolyl ring occupying either an equatorial position (type A), or an axial position (type B), and a five-coordinate species with a κ3, Tp3R,5R ligand (type C). In the carbonyl complexes 1 the dynamic equilibria between these isomers are solvent dependent. Interestingly, solutions of complex 1c contained all three isomers simultaneously. 103Rh and 13C NMR spectral studies indicate that the NBD compounds, 2, preferentially form square-planar complexes when TpCF3,Me and TpCF3,CF3 are present, while for the COD complexes, 3, square-planar complexes are preferred for all three Tp-type ligands. The X-ray structure of TpCF3,MeRh(CO)2 (1b) was determined (spacce group C2/ c,a = 21.271(9), B = 11.004(3), C = 21.563(9) Å, β = 114.93(3)°, V=4577(3) Å3, Z = 8, R = 3.41, Rw = 4.70). Its structure is of type B, with the third pyrazolyl ring axially placed, the N(4) being almost directly above the Rh atom but exerting only a weak Rh-N interaction.  相似文献   

5.
The syntheses and structures of [Ni(H2O)6]2+[MF6]2− (M = Ti,Zr,Hf) and Ni3(py)12F6·7H2O are reported. The former three compounds are isostructural, crystallizing in the trigonal space group (No. 148) with Z = 3. The lattice parameters are a = 9.489(4), C = 9.764(7) Å, with V = 761(1) Å3 for Ti; a = 9.727(2), C = 10.051(3) Å, with V = 823.6(6) Å3 for Zr; and a = 9.724(3), C = 10.028(4)Å, with V = 821.2(8)Å3 for Hf. The structures consist of discrete [Ni(H2O)6]2+ and [MF6]2− octahedra joined by O---HF hydrogen bond Large single crystals were grown in an aqueous hydrofluoric acid solution. Ni3(py)12F6·7H2O crystallizes in the monoclinic space group I2/a (No. 15) with Z = 4. The lattice parameters are a = 16.117(4), B = 8.529(3), C = 46.220(7) Å, β = 92.46(2)°, and V = 6348(5) Å3. The structure consists of discrete Ni(py)4F2 octahedra linked through H---O---HF and H---O---HO hydrogen bonding interactions. Single c were grown from a (HF)x·pyridine/pyridine/water solution.  相似文献   

6.
An improved synthetic procedure for pentabenzylcyclopentadiene Bz5C5H was developed. Six new organomolybdenum and organotungsten halides η5-Bz5C5M(CO)3X(M = Mo, W; X = Cl, Br, I) were syntesized through the reaction of η5-Bz5C5M(CO)3Li (derived from Bz5C5H, n-BuLi and M(CO)6) with PCl3, PBr3 or I2 and characterized by elemental analysis, IR and 1H NMR spectroscopy. The structure of η5-Bz5C5Mo(CO)3I was determined by single-crystal X-ray diffraction techniques. It crystallized in the monoclinic space groupp P2/c with cell parameters a = 13.294(4), B = 15.147(4), C = 19.027(3) Å, β = 108.32(2)°, V = 3637(2) Å3, Z = 4 and Dx = 1.50 g cm−3. The final R value was 0.035 for 4564 observed reflections.  相似文献   

7.
Reaction of RuCl(η5-C5H5(pTol-DAB) with AgOTf (OTf = CF3SO3) in CH2Cl2 or THF and subsequent addition of L′ (L′ = ethene (a), dimethyl fumarate (b), fumaronitrile (c) or CO (d) led to the ionic complexes [Ru(η5-C5H5)(pTol-DAB)(L′)][OTf] 2a, 2b and 2d and [Ru(η5-C5H5)(pTol-DAB)(fumarontrile-N)][OTf] 5c. With the use of resonance Raman spectroscopy, the intense absorption bands of the complexes have been assigned to MLCT transitions to the iPr-DAB ligand. The X-ray structure determination of [Ru(η5-C5H5)(pTol-DAB)(η2-ethene)][CF3SO3] (2a) has been carried out. Crystal data for 2a: monoclinic, space group P21/n with A = 10.840(1), b = 16.639(1), C = 14.463(2) Å, β = 109.6(1)°, V = 2465.6(5) Å3, Z = 4. Complex 2a has a piano stool structure, with the Cp ring η5-bonded, the pTol-DAB ligand σN, σN′ bonded (Ru-N distances 2.052(4) and 2.055(4) Å), and the ethene η2-bonded to the ruthenium center (Ru-C distances 2.217(9) and 2.206(8) Å). The C = C bond of the ethene is almost coplanar with the plane of the Cp ring, and the angle between the plane of the Cp ring and the double of the ethene is 1.8(0.2)°. The reaction of [RuCl(η5-C5H5)(PPh)3 with AgOTf and ligands L′ = a and d led to [Ru(η5-C5H5)(PPh3)2(L′)]OTf] (3a) and (3d), respectively. By variable temperature NMR spectroscopy the rottional barrier of ethene (a), dimethyl fumarate (b and fumaronitrile (c) in complexes [Ru(η5-C5H5)(L2)(η2-alkene][OTf] with L2 = iPr-DAB (a, 1b, 1c), pTol-DAB (2a, 2b) and L = PPh3 (3a) was determined. For 1a, 1b and 2b the barrier is 41.5±0.5, 62±1 and 59±1 kJ mol−1, respectively. The intermediate exchange could not be reached for 1c, and the ΔG# was estimated to be at least 61 kJ mol. For 2a and 3a the slow exchange could not be reached. The rotational barrier for 2a was estimated to be 40 kJ mol. The rotational barier for methyl propiolate (HC≡CC(O)OCH3) (k) in complex [Ru(η5-C5H5)(iPr-DAB) η2-HC≡CC(O)OCH3)][OTf] (1k) is 45.3±0.2 kJ mol−1. The collected data show that the barrier of rotational of the alkene in complexes 1a, 2a, 1b, 2b and 1c does not correlate with the strength of the metal-alkene interaction in the ground state.  相似文献   

8.
The molecular structure of the title complexes [Fe(H2O)4][Fe(Hedta)(H2O)]2 · 4H2O (I) and [Fe(H[2edta)(H2O)] · 2H2O (II) have been determined by single-crystal X-ray analyses. The crystal data are as follows: I: monoclinic, P21/n, A = 11.794(2), B = 15.990(2), C = 9.206(2) Å, β = 90.33(1)°, V = 1736.1(5) Å3, Z = 2 and R = 0.030; II: monoclinic, C2/c, A = 11.074(2), B = 9.856(2), C = 14.399(2) Å, β = 95.86(1)°, V = 1563.3(4) Å3, Z = 4 and R = 0.025. I is found to be isomorphous with the MnII analog reported earlier and to contain a seven-coordinate and approximately pentagonal-bipyramidal (PB) [FeII(Hedta)(H2O] unit in which Hedta acts as a hexadentate ligand. The [FeII(H2edta)(H2O)] unit in II has also a seven-coordinate PB structure with the two protonated equatorial glycine arms both remaining coordinated, and thus bears a structural resemblance to the seven-coordinate [CoII(H2edta)(H2O)] reported previously.  相似文献   

9.
The first examples of binary palladium(II) derivatives of unsaturated carboxylic acids are reported. It was found that the interaction of Pd3(μ-OAc)6 with the ,β-unsaturated 1-methylcrotonic (tiglic) and crotonic acids leads to the corresponding carboxylates of composition Pd3[μ-O2CC(R′) = CHMe]6, where R′ = Me (1) or H (2). The new compounds have been characterized by elemental analysis, solid and solution IR, 1H and 13C NMR, and ESI mass spectrometry. The crystal structure of 1 has been determined. This molecule displays a central Pd3 cyclic core with Pd–Pd distances of 3.093–3.171 Å. Each Pd–Pd bond is bridged by a pair of carboxylate ligands, one above and the other below the Pd3 plane, providing a square planar coordination for each Pd atom in an approximate D3h overall symmetry arrangement. Solution spectroscopic data show that the bridging η112 interaction of the carboxylates of 1 and 2 is readily displaced, with a change of the ligand to the terminal (η1) coordination mode.  相似文献   

10.
New mixed metal complexes SrCu2(O2CR)3(bdmap)3 (R = CF3 (1a), CH3 (1b)) and a new dinuclear bismuth complex Bi2(O2CCH3)4(bdmap)2(H2O) (2) have been synthesized. Their crystal structures have been determined by single-crystal X-ray diffraction analyses. Thermal decomposition behaviors of these complexes have been examined by TGA and X-ray powder diffraction analyses. While compound 1a decomposes to SrF2 and CuO at about 380°C, compound 1b decomposes to the corresponding oxides above 800°C. Compound 2 decomposes cleanly to Bi2O3 at 330°C. The magnetism of 1a was examined by the measurement of susceptibility from 5–300 K. Theoretical fitting for the susceptibility data revealed that 1a is an antiferromagnetically coupled system with g = 2.012(7), −2J = 34.0(8) cm−1. Crystal data for 1a: C27H51N6O9F9Cu2Sr/THF, monoclinic space group P21/m, A = 10.708(6), B = 15.20(1), C = 15.404(7) Å, β = 107.94(4)°, V = 2386(2) Å3, Z = 2; for 1b: C27H60N6O9Cu2Sr/THF, orthorhombic space group Pbcn, A = 19.164(9), B = 26.829(8), C = 17.240(9) Å, V = 8864(5) Å3, Z = 8; for 2: C22H48O11N4Bi2, monoclinic space group P21/c, A = 17.614(9), B = 10.741(3), C = 18.910(7) Å, β = 109.99(3)°, V = 3362(2) Å3, Z = 4.  相似文献   

11.
The molecular structure of trans-[Pd(PhC(O)CHP(n-C4H9)3)2Cl2] has been determined via a single crystal X-ray diffraction study: triclinic,P1,a = 8.876(2),b = 10.908(3),c = 11.938(4)Å, = 97.06(2)°, β = 102.79(2)°, γ = 100.51(2)°,V= 1092.1(5)Å3,Z = 1 and R(F) = 4.61%. The phosphorus ylide molecules are bound to the palladium atom through their methine carbon atoms, the overall coordination geometry about the palladium being square planar. The protons in the ortho-positions of the two phenyl group are poised above and below the palladium atom, suggesting that the complex is a precursor of the ortho-metalated complex [Pd(μ-Cl)(C6H4C(O)CHP(n-C4H9)3)]2 synthesized earlier in our laboratory.  相似文献   

12.
The first 1:2 metal complexes of 2-(2′-pyridyl)quinoxaline (L) have been isolated. The physical and spectroscopic characteristics of the compounds [MCl2L2] (M = Ni, Cu, Cd) and [CuIL2](PF6) are described. The structure of the copper(I) complex has been determined by X-ray diffraction methods. Crystals are orthorhombic, space group Pcnb with A = 11.014(2), B = 12.886(2), C = 17.806(4) Å, V = 2527.1(9) Å3 and Z = 4. Refinement of the structure gave a final R factor of 0.046 (Rw = 0.041) for 814 unique reflections having I > 2.0σ(I). The ligand L acts as a bidentate chelate, the ligated atoms being the pyridine nitrogen and the nearest quinoxaline nitrogen. The structure of [CuL2]+ consists of a distorted tetrahedral arrangement around the copper(I) atom with Cu---N bond lengths of 2.023(6) and 2.059(5) Å and the N---Cu---N angle of the chelating ligand equal to 80.6(2)°. A monomeric trans pseudo-octahedral stereochemistry is assigned for the [MCl2L2] complexes.  相似文献   

13.
In this paper, we report the crystal and molecular structure of μ-oxo-bis(5,10,15,20)tetrakispentafluorophenyl)porphinatoiron(III) [(TPP(F5)Fe)2O]. The crystals belong to the tetragonal system, space group I41/a, with a =b = 26.362(7),c = 30.886(8)Å,V = 21465Å3,Z = 8 and Dcalc = 1.496. Discrepancy indices are R1 = 0.084 and R2 = 0.104 for 3320 reflections having I3σ(I). The FeNp average distance, 2.088(11)Å, is at the long end of the range of high-spin ferric porphyrin while the FeO distances (1.775(1)Å) are similar to those of the non-halogenated analog (TPPFe)2O. The FeOFe angle of 178.4(5)° shows an essentially linear oxo bridge. The 0.673(2)Ådisplacement of the iron atom from the porphyrin mean plane is unusually large. The facing porphyrin rings are twisted 47° with respect of each other giving the molecule nearly exact D4d symmetry.  相似文献   

14.
Reaction of (NEt4)2MS4 (M = Mo, W) with CuCl and KSCN (or NH4SCN) in acetone or acetonitrile affords a new set of mixed metal–sulfur compounds: infinite anionic chains Cu4(NCS)5MS43− (1,2), (CuNCS)3WS42− (3) and two dimensional polymeric dianions (CuNCS)4MS42− (4,5). Crystal of 1 (M = W) and 3 are triclinic, space group P1(1:a = 10.356(2),b = 15.039(1),c = 17.356(2)Å, = 78.27(1)°, β = 88.89(2)° and γ = 88.60(1)°,Z = 2,R = 0.04 for 3915 independent data;3:a = 8.449(2),b = 14.622(4),c = 15.809(8)Å, = 61.84(3)°, β = 73.67(3)° and γ = 78.23(2)°,Z = 2,R = 0.029 for 6585 independent data). Crystals of 4 (M = W) and 5 (M = Mo) are monoclinic, space group P21/m,Z = 2 (4:a = 12.296(4),b = 14.794(4),c = 10.260(3)Åand β = 101.88(3)°,R = 0.034 for 4450 independent data;5:a = 12.306(2),b = 14.809(3),c = 10.257(2)Åand β = 101.99(3)°,R = 0.043 for 3078 independent data). The crystal structure determinations of 4 and 5 show that four edges of the tetrahedral MS42− core are coordinated by copper atoms forming WS4Cu4 aggregates linked by eight-membered Cu(NCS)2Cu rings. A two-dimensional network is thus formed in the diagonal (101) plane. The space between the anionic two-dimensional networks is filled with the NEt4+ cations. Additional NCS groups lead to the [Cu4(NCS)5WS4]3− (1) trianion connected by NCS bridges forming pseudo-dimers. These latter are held together by weak CuS(NCS) interactions giving rise to infinite chains along a direction parallel to [100]. In contrast complex3 develops infinite chains from WS4Cu3 aggregates with the same Cu(NCS)2Cu bridges as in 4 and 5. These chains are running along a direction parallel to [010]. The structural data of the different types of polymeric compounds containing MS42− and CuNCS have been used to interpret vibrational spectroscopic data of the thiocyanate groups.  相似文献   

15.
The trinuclear complexes [Ag(PR3)2]2[Ni(mnt)2] and [AgL]2[Ni(mnt)2] have been prepared by reactions of (NEt4)2[Ni(mnt)2] and Ag2SO4 with alkyl phosphines (PR3=P(CH3)3 (PMe3) for 1, P(C2H5)3 (PEt3) for 2 and P(C6H11)3 (PCy3) for 3), or with chelating diphosphines (L=1,1′-bis(diphenylphosphino)ferrocene (dppf) for 4 and bis(diphenylphosphino)methane (dppm) for 5). The structures of all the complexes have been determined by X-ray crystallography. Interactions between the [Ag(PR3)2]+ and [Ni(mnt)2]2− groups occur in compounds 1 and 2 with Ni---Ag distances of 3.063(4) and 2.9311(6) Å, respectively. Only one sulfur atom of each mnt ligand bridged [Ag(PR3)2]+ cations and [Ni(mnt)2]2− anions in compound 1 through 3 with Ag---S distances of about 2.7 Å. There is no interaction between Ag and Ni in compound 3 due to the flexibility of the cyclohexyl groups. Interactions between [AgL]+ and [Ni(mnt)2]2− groups also occur in compound 4 with a much shorter Ag---Ni distance of 2.7213(7) Å, while silver atoms and the NiS4 plane in compound 4 make a chair conformation with Ag---S distances of about 2.8 Å. In compound 5, dppm bridges two silver atoms, and interaction between silver atoms occurs at a distance of 2.9859(11) Å, and only one sulfur atom of mnt is used to bridge Ni and Ag atoms with Ag---S distances of 2.582(3) and 2.663(3) Å.  相似文献   

16.
Four complexes of the type [Cu4I4(CH3CN)2(L)2], L = aniline derivative: Cu4I4(CH3CN)2(2,6-dimethylaniline)2 (I), triclinic, , a = 12.449(3), B = 14.108(6), C = 10.606(4) Å, = 73.46(3), β = 95.00(2), γ = 73.42(3)°, V = 1682.3(10) Å3; Cu4I4(CH3CN)2(o-ethylaniline)2 (II), triclinic, , V = 1734.0(8) Å3; Cu4I4(CH3CN)2(6-ethyl-o-toluidine)2 (III), orthorhombic, Pnam, a = 14.976(6), b = 21.187(6), C = 12.545(2) Å, V = 3980.7(2) Å3; Cu4I4(CH3CN)2(p-anisidine)2 (IV), monoclinic, A2/a, A = 20.032(10), B = 7.863(1), C = 18.715(9) Å, β = 101.56(4)°, V = 2888.0(2) Å3; were examined by single crystal X-ray diffraction. Complexes I and II have no internal symmetry elements, III has an internal mirror and IV has a two-fold axis. Ab initio calculations based on the atomic positional parameters of complexes containing the three types of symmetry elements reveal HOMO orbitals to be dominated by the p orbitals of the iodine atoms whereas the LUMO orbitals contain major contributions from copper based p orbitals.  相似文献   

17.
The hydrothermal reactions of (Ph4P)[VO2Cl2] and H2C2O4 at 150 and 125°C yield (Ph4P)2[V2O2(H2O)2(C2O4)3]·4H2O (1) and (Ph4P)[VOCl(C2O4)] (2), respectively. The structure of the molecular anion of 1 consists of a binuclear unit of oxovanadium(IV) octahedra bridged by a bisbidentate oxalate group. The VO6 coordination geometry at each vanadium site is defined by a terminal oxo group, an aquo ligand, and four oxygen donors — two from the bisbidentate bridging oxalate and two from the terminal bidentate oxalate. The structure of 2 consists of discrete Ph4P+ cations occupying regions between [VOCl(C2O4)] spiral chains. The structure of the one-dimensional anionic chain exhibits V(IV) octahedra bridged by bisbidentate oxalate groups. Crystal data: 1·4H2O, monoclinic P21/n, A = 12.694(3), B = 12.531(3), C = 17.17(3) Å, β = 106.32(2)°, V = 2621.3(13) Å3, Z = 2, Dcalc = 1.501 g cm−3, structure solution and refinement converged at a conventional residual of 0.0518; 2, tetragonal P43, A = 12.145(2), C = 15.991(3) Å, V = 2358.7(12) Å3, Z = 4, R = 0.0452.  相似文献   

18.
The syntheses of nitrosyl–dimethylsulfoxide–ruthenium(II) complexes with general formula mer-[RuCl3(L)(DMSO)(NO)] (L=DMSO or CD3CN) is reported. The mer-[RuCl3(DMSO)2(NO)] (1) complex was obtained from the reaction of [RuCl3(NO)] with the sulfoxide ligand in acetone. The mer-[RuCl3(CD3CN)(DMSO)(NO)] (2) compound was obtained from mer-[RuCl3(DMSO)2(NO)] maintained in deuterated acetonitrile. These data suggest a slow kinetic reaction due the low lability of the DMSO ligand coordinated to the {RuII–NO+} species. The crystal and molecular structures of (1) and (2) have been determined from X-ray studies. Crystal data: for (1), monoclinic, P21/c, a=8.8340(2) Å, b=12.0230(3) Å, c=13.7064(4) Å, β=114.546(2)°, Z=4, R1=0.0429; for (2), monoclinic, P21/n, a=10.0180(7) Å, b=9.5070(7) Å, c=13.3340(9) Å, β=102.264(4)°, Z=4, R1=0.0472. The spectroscopic characterization of (1), in solid state (infrared spectrum) and in solution (nuclear magnetic resonance and cyclic voltammetry) is also described.  相似文献   

19.
The reactivity, towards nucleophiles and electrophiles, of dimolybdenum allenylidene complexes of the type [Cp2Mo2(CO)4(μ,η2(4e)-C=C=CR1R2)] (Cp=η5-C5H5) has been investigated. The nucleophilic attacks occur at the Cγ carbon atom, while electrophiles affec the C atom. Variable temperature solution 1H NMR studies show a dynamic behavior of these complexes consisting of an equilibrium between two enantiomers with a symmetrical [Cp2Mo2(CO)4(μ-σ,σ(2e)-C=C=CR1R2)] transition state. Extended Hückel MO calculations have been carried out on the model [Cp2Mo2(CO)4(μ,η2-C=C=CH2]. The calculated charges of the allenylidene carbon atoms suggest that the electrophilic attacks are under charge control, while the nucleophilic attacks are rather under orbital control.  相似文献   

20.
The title compoud, [TlMe2(HL)(H2O)] (HL = monoanion of pyridoxal thiosemicarbazone), crystallizers in the triclinic space group , No. 2). The HLanion coordinates to the thallium atom, in an unusual mode through the S atom (Tl-S = 2.832(1) Å), and also forms a weak bond with the metal atom of a neighbouring molecule to make an asymmetric bridge (Tl′…S = 3.190(1) Å). The acidic proton retained in the thiosemicarbazonato anion is located on the oxygen of the phenolic hydroxyl group. The water molecule is only 2.630(4) Å from the metal, suggesting a rather strong bond that contrasts with the long distance between the thallium and the phenolic oxygen (Tl…O(1)′ = 3.124(4) Å). If both strong and weak intermolecular interactions are taken in account, the metal has distorted octahedral coordination with the methyl groups in apical positions. The solid state IR spectrum and 1H, 13C and 205Tl NMR spectra in DMSO solution are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号