首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The size of RNA attached to nascent DNA fragments of Escherichia coli with a chain length of 400 to 2000 nucleotides is estimated to be about 50 to 100 nucleotides from: (a) the density of the molecules of known sizes; (b) the decrease of the molecular size produced by hydrolysis with RNases or alkali; and (c) the size of RNA released by DNase treatment. Only a small decrease in molecular size is produced by RNase or alkali treatment, excluding the possibility that the RNA is located in the middle of the fragment or that ribonucleotide sequences are scattered in the molecule. The RNA is not located at the 3′ end of the molecule either, since the DNA is degraded by 3′ → 5′ exonuclease action of bacteriophage T4 DNA polymerase which has neither RNase nor DNA endonuclease activity. Positive evidence for the covalent attachment of the RNA to the 5′ end of the DNA is provided by the finding that one 5′-OH terminus of DNA is created from each RNA-linked DNA fragment by alkaline hydrolysis. The quantitative production of the 5′-OH group at the 5′ end of DNA is also found upon hydrolysis with pancreatic RNase, indicating that the 3′-terminal base of the RNA segment of the fragments is a pyrimidine. On the other hand, when the RNA-linked DNA fragments hydrolysed with alkali or pancreatic RNase are incubated with [γ-32P]ATP and polynucleotide kinase and the DNA thus labelled is degraded to constituent 5′-mononucleotides, the 32P is found only in dCMP. Therefore, C is the specific 5′-terminal base of the DNA segment of the RNA-linked DNA fragments, and the RNA-DNA junction has the structure … p(rPy)p(dC)p …  相似文献   

2.
The fractionation abilities of several ion-exchangers of the high-performance liquid chromatography type for two sets of DNA restriction fragments, ranging from 7 base pairs (bp) to about 650 bp and differing in their mean base composition, have been studied. The ion-exchangers tested comprise the RPC-5, the 5-PW DEAE and the Mono Q as polymer-based resins, and the Nucleogens 500 and 4000, both prepared from silica beads. The results indicate that all the ion-exchangers except the 5-PW DEAE perfectly separate fragment sizes up to about 90 bp, the 5-PW DEAE separating to 45 bp only. Above 200 bp only the Mono Q resin works in a satisfactory way provided that about 100 micrograms DNA mixture, containing less than 25 fragments within the given size range, is loaded per milliliter of packed resin. Appreciable base-pair specificities were detected for most of the resins which cause substantial retardations of the d(A + T)-rich fragments with respect to the eluting salt concentration. If the latter dominate in the DNA sample, acceptable results were only obtained with the Mono Q resin when the column was operated at elevated temperature.  相似文献   

3.
Protein S3 fragments were determined that crosslink to modified mRNA analogues in positions +5 to +12 relative to the first nucleotide in the P-site bound codon in model complexes mimicking states of ribosomes at the elongation and translation termination steps. The mRNA analogues contained a Phe codon UUU/UUC at the 5′-termini that could predetermine the position of the tRNAPhe on the ribosome by the P-site binding and perfluorophenylazidobenzoyl group at a nucleotide in various positions 3′ of the UUU/UUC codon. The crosslinked S3 protein was isolated from 80S ribosomal complexes irradiated with mild UV light and subjected to cyanogen bromide—induced cleavage at methionine residues with subsequent identification of the crosslinked oligopeptides. An analysis of the positions of modified oligopeptides resulting from the cleavage showed that, in dependence on the positions of modified nucleotides in the mRNA analogue, the crosslinking sites were found in the N-terminal half of the protein (fragment 2–217) and/or in the C-terminal fragment 190–236; the latter reflects a new peculiarity in the structure of the mRNA binding center in the ribosome, unknown to date. The results of crosslinking did not depend on the type of A-site codon or on the presence of translation termination factor eRF1.  相似文献   

4.
The ameboid stage of the amebo-flagellate Naegleria gruberi was found to synthesize two size classes of polynucleotides resistant to digestion with a mixture of ribonuclease A and T1. These two size classes were present in both the nucleus and the cytoplasm. Cells differentiating into flagellates were found to lose a variable amount of the smaller, nuclease-resistant fragment while synthesizing only the larger nuclease-resistant class. The adenosine to AMP ratio of the larger nuclease-resistant fragment was compatible with a 3′-terminal poly(A) sequence of 87 nucleotides average length. The smaller nuclease-resistant fragment was found to be rich in AMP (44–49%) but contained a substantial amount of other nucleotides. The smaller fragment was heterogeneous in size with an average length of 10–12 nucleotides as estimated by its elution from a DEAE column. Fractionation of RNA on oligo(dT) cellulose demonstrated that the large and small nuclease-resistant fragments were on different RNA molecules. Only the large poly(A) sequence was present in either cytoplasmic or nuclear RNA which bound to oligo(dT) cellulose. On the other hand, only the small nuclease resistant fragment was found in the unbound RNA from either nuclei or cytoplasm.  相似文献   

5.
The arrangement of the stop codon and its 3′-flanking codon relative to the components of translation termination complexes of human 80S ribosomes was studied using mRNA analogs containing the stop signal UPuPuPu (Pu is A or G) and the photoreactive perfluoroarylazido group, which was linked to a stop-signal or 3′-flanking nucleotide (positions from +4 to +9 relative to the first nucleotide of the P-site codon). Upon mild UV irradiation, the analogs crosslinked to components of the model complexes, mimicking the state of the 80S ribosome at translation termination. Termination factors eRF1 and eRF3 did not change the relative arrangement of the stop signal and 18S rRNA. Crosslinking to eRF1 was observed for modified nucleotides in positions +5 to +9 (that for stop-codon nucleotide +4 was detected earlier). The eRF1 fragments crosslinked to the mRNA analogs were identified. Fragment 52–195, including the N domain and part of the M domain, crosslinked to the analogs carrying the reactive group at A or G in positions +5 to +9 or at the terminal phosphate of nucleotide +7. The site crosslinking to mRNA analogs containing modified G in positions +5 to +7 was assigned to eRF1 fragment 82–166 (beyond the NIKS motif). All but one analog (that with modified G in position +4) crosslinked to the C domain of eRF1 (fragment 330–422). The efficiency of crosslinking to the C domain was higher than to the N domain in most cases. It was assumed that the C domain of eRF1 bound in the A site is close to nucleotides +5 to +9, especially +7 and +8, and that eRF1 undergoes substantial conformational changes when binding to the ribosome.  相似文献   

6.
In contrast to expectation (Srinivasan, S. and Jaspars, E.M.J. (1978) Biochim. Biophys. Acta 520, 237–241) differentiated thermal melting profiles and fluorescence measurements show that the coat protein of alfalfa mosaic virus has a negligible effect on the base-paired structure of isolated 3′-terminal fragments (length about 90 nucleotides) of the coat protein messenger RNA (RNA 4) of this virus.  相似文献   

7.
A 3′-terminal fragment, about 160 nucleotides long, was cleaved by limited nuclease digestion from each of the four RNA components of brome mosaic virus, and purified by two cycles of gel electrophoresis. These fragments accepted tyrosine in reactions catalyzed by wheat germ aminoacyl-tRNA synthetase. Analyses of nuclease digests suggested that the sequences of the fragments from brome mosaic virus RNA 3 and 4 were identical and that the fragments from RNA 1 and 2 differed from that of RNA 4 only in the positions of two and one nucleotides, respectively. A fragment isolated in a similar way from cowpea chlorotic mottle virus was similar in size to the brome mosaic virus RNA fragments, accepted tyrosine in the presence of wheat germ aminoacyl-tRNA synthetase, but had a substantially different nucleotide sequence.  相似文献   

8.
葡萄糖异构酶(glucoseisomerase,GI)是使用量最大的工业酶之一,可用于高果糖浆的生产,也可以用含木聚糖物质及废料为底物发酵生产乙醇,具有重要的经济价值.本文选择了表达载体pBV220[1],利用PCR方法删除了原表达质粒pTKDGI1中GI结构基因5′端多余的核苷酸,并添加了合适的酶切位点,重新构建了能在大肠杆菌DH5α中高效表达GIG138P的表达质粒pBZGI1.传代实验表明,新表达体系的稳定性明显优于原表达体系.粗酶液经热处理、DEAESepharoseFF和分子筛Se…  相似文献   

9.
Proteins S4, S16/S17 and S20 of the 30 S ribosomal subunit of Escherichia coli+ associate with specific binding sites in the 16 S ribosomal RNA. A systematic investigation of the co-operative interactions that occur when two or more of these proteins simultaneously attach to the 16 S RNA indicate that their binding sites lie near to one another. The binding site for S4 has previously been located within a 550-nucleotide RNA fragment of approximately 9 S that arises from the 5′-terminal portion of the 16 S RNA upon limited hydrolysis with pancreatic ribonuclease. The 9 S RNA was unable to associate with S20 and S16/S17, however, either alone or in combination. A fragment of similar size and nucleotide sequence, termed the 9 S1 RNA, has been isolated following ribonuclease digestion of the complex of 16 S RNA with S20 and S16/S17. The 9 S1 RNA bound not only S4, but S20 and S16/S17 as well, although the fragment complex was stable only when both of the latter protein fractions were present together. Nonetheless, measurements of binding stoichiometry demonstrated the interactions to be specific under these conditions. A comparison of the 9 S and 9 S1 RNAs by electrophoresis in polyacrylamide gels containing urea revealed that the two fragments differ substantially in the number and distribution of hidden breaks. Contrary to expectation, the RNA in the ribonucleoprotein complex appeared to be more accessible to ribonuclease than the free 16 S RNA as judged by the smaller average length of the sub-fragments recovered from the 9 S1 RNA. These results suggest that the binding of S4, S16/S17 and S20 brings about a conformational alteration within the 5′ third of the 16 S RNA.To delineate further the portions of the RNA chain that interact with S4, S16/S17 and S20, specific fragments encompassing subsequences from the 5′ third of the 16 S RNA were sought. Two such fragments, designated 12 S-I and 12 S-II, were purified by polyacrylamide gel electrophoresis from partial T1 ribonuclease digests of the 16 S RNA. The two RNAs, which contain 290 and 210 nucleotides, respectively, are contiguous and together span the entire 5′-terminal 500 residues of the 16 S RNA molecule. When tested individually, neither 12 S-I nor 12 S-II bound S4, S16/S17 or S20. If heated together at 40 °C in the presence of Mg2+ ions, however, the two fragments together formed an 8 S complex which associated with S4 alone, with S16/S17 + S20 in combination, and with S4 + S16/S17 + S20 when incubated with an un fractionated mixture of 30 S subunit proteins. These results imply that each fragment contains part of the corresponding binding sites.  相似文献   

10.
Heavy meromyosin, obtained by tryptic digestion of myosin, containing two main polypeptides whose masses were estimated as 81,000 and 74,000 dlatons from Na dodecyl-SO4 polyacrylamide gel electrophoresis, was further digested with trypsin. The Ca2+-activated ATPase activity remainded unchanged and the K+-EDTA activity increased while various smaller fragments were formed. The formation of some of these fragments is affected by Ca2+ or Mg2+ as first shown by Bálint et al. (Bálint, M., Schaefer, A., Biro, N. A., Menczel, L., AND Fejes, E. (1971) J. Physiol. Chem. Phys. 3, 455). On the basis of the time course of the appearance of fragments the following relationship emerges: see article. The 64K leads to 60K step is inhibited by divalent cations, while the breakdown of the 74K fragment is accelerated. The effect of Ca2+ was maximal at 0 similar to 0.1 muM, that of Mg2+ at 10 muM. The original light chains of myosin are not present in the heavy meromyosin serving as the starting material, but peptide material appears on electrophoresis in positions starting material, but peptide material appears on electrophoresis in positions where the light chains would be found. The fragments marked by an asterisk are considered to ba alpha-helical on the basis of their solubility at low ionic strength after precipitation with ethanol (Bálint et al.). The fact that alpha helical fragments are derived from the 60,000-dalton fragment indicateds that it is adjacent to the light meromyosin in the intact myosin while the 74,000- dalton fragment would be part of heavy meromysoin subfragment 1. Chromatography of Sephadex G-200 separates fractions with ATPase activity corresponding to heavy meromyosin and heavy meromyosin subfragment 1. Electrophoresis of these Sephadex fractions suggests that the main peptide constituting heavy meromysoin subfragment 1 is connected by noncobalent forces to a portion of the rod that is not immediately adjacent to it in the primary sequence. The significance of this finding is discussed in terms of the flexibility of the myosin head.  相似文献   

11.
NH2-terminal sequence analysis was performed on subregions of human plasma fibronectin including 24,000-dalton (24K) DNA-binding, 29,000-dalton (29K) gelatin-binding, and 18,000-dalton (18K) heparin-binding tryptic fragments. These fragments were obtained from fibronectin after extensive trypsin digestion followed by sequential affinity purification on gelatin-Sepharose, heparin-agarose, and DNA-cellulose columns. The gelatin-binding fragment was further purified by gel filtration on Sephadex G-100, and the DNA-binding and heparin-binding fragments were further purified by high-performance liquid chromatography. The 29K fragment had the following NH2-terminal sequence: AlaAlaValTyrGlnProGlnProHisProGlnProPro (Pro)TyrGlyHis HisValThrAsp(His)(Thr)ValValTyrGly(Ser) ?(Ser)?-Lys. The NH2-terminal sequence of a 50K, gelatin-binding, subtilisin fragment by L. I. Gold, A. Garcia-Pardo, B. Prangione, E. C. Franklin, and E. Pearlstein (1979, Proc. Nat. Acad. Sci. USA76, 4803–4807) is identical to positions 3–19 (with the exception of some ambiguity at position 14) of the 29K fragment. These data strongly suggest that the 29K tryptic fragment is included in the 50K subtilisin fragment, and that subtilisin cleaves fibronectin between the Ala2Val3 residues of the 29K tryptic fragment. The 18K heparin-binding fragment had the following NH2-terminal sequence: (Glu)AlaProGlnProHisCysIleSerLysTyrIle LeuTyrTrpAspProLysAsnSerValGly?(Pro) LysGluAla?(Val)(Pro). The 29K gelatin-binding and 18K heparin-binding fragments have proline-rich NH2-terminal sequences suggesting that they may have arisen from protease-sensitive, random coil regions of fibronectin corresponding to interdomain regions preceding macromolecular-binding domains. Both of these fragments contain the identical sequence ProGlnProHis, a sequence which may be repeated in other interdomain regions of fibronectin. The 24K DNA-binding fragment has the following NH2-terminal sequence: SerAspThrValProSerProCysAspLeuGlnPhe ValGluValThrAspVal LysValThrIleMetTrpThrProProGluSerAla ValThrGlyTyrArgVal AspValCysProValAsnLeuProGlyGluHisGly Gln(Cys)LeuProIleSer. The sequence of positions 9–22 are homologous to positions 15–28 of the α chain of DNA-dependent RNA polymerase from Escherichia coli. The homology observed suggests that this stretch of amino acids may be a DNA-binding site.  相似文献   

12.
A high-resolution map for the arrangement of histones along DNA in the nucleosome core particles has been determined by a new sequencing procedure. The lysine groups of histones were crosslinked to partly depurinated DNA at neutral pH. One strand of DNA was split at the points of crosslinking, thus leaving the 5′-terminal DNA fragments bound to histones. The lengths of these crosslinked DNA fragments were measured to determine the position of histones on one strand of the core DNA from its 5′ end.The results demonstrate that histones are bound to regularly arranged, discrete DNA segments about six nucleotides long. These segments are separated by histone-free gaps about four nucleotides wide located at a distance of about 10n nucleotides from the 5′ end of DNA. The first 20 nucleotides from the 5′ ends of DNA seem to be free of histones. Histones appear to be arranged symmetrically and in a similar way on both DNA strands. Any one histone, being bound predominantly to discrete segments on one or other of the strands, can oscillate at the same time between the two strands across the major DNA groove. Two symmetrical models for the arrangement of two molecules of each core histone on linearized and folded DNA are proposed.  相似文献   

13.
The deletions in RNAs of three defective interfering (DI) particles of poliovirus type 1 have been located and their approximate extent determined by three methods. (1) Digestion with RNase III of DI RNAs yields the same 3′-terminal fragments as digestion with RNase III of standard virus RNA. The longest 3′-terminal fragment has a molecular weight of 1.55 × 106. This suggests that the deletions are located in the 5′-terminal half of the polio genome. (2) Fingerprints of RNase T1-resistant oligonucleotides of all three DI RNAs are identical and lack four large oligonucleotides as compared to the fingerprints of standard virus, an observation suggesting that the deletions in all three DI RNAs are located in the same region of the viral genome. The deletion-specific oligonucleotides have also been shown to be within the 5′-terminal half of the viral genome by alkali fragmentation of the RNA and fingerprinting poly (A)-linked (3′-terminal) fragments of decreasing size. (3) Virion RNA of DI(2) particles was annealed with denatured double-stranded RNA (RF) of standard virus and the hybrid heteroduplex molecules examined in the electron microscope. A single loop, approximately 900 nucleotides long and 20% from one end of the molecules, was observed. Both the size and extent of individual deletions is somewhat variable in different heteroduplex molecules, an observation suggesting heterogeneity in the size of the deletion in RNA of the DI(2) population. Our data show that the DI RNAs of poliovirus contain an internal deletion in that region of the viral genome known to specify the capsid polypeptides. This result provides an explanation as to why poliovirus DI particles are unable to synthesize viral coat proteins.  相似文献   

14.
We describe a method to fluorescently label microgram quantities of high molecularweight RNA with acriflavine. The method involves hydrolyzing the RNA with HCl at pH 1.0 for 10 min to obtain segments of about 80 nucleotides. The 3′-terminal phosphate is removed from the ribose with alkaline phosphatase, and the terminal ribose is oxidized with periodate to form dialdehydes. Acriflavine is bound to the dialdehyde by the formation of a Schiff's base, and unbound acriflavine is removed by dialysis followed by chromatography on a Sephadex G-25 column eluted with phosphate buffered guanidine-HCl. Human 18 S rRNA bound 0.94 acriflavine molecules per 100 nucleotides and had a fluorescence excitation maximum at 460 nm and an emission maximum at 508 nm. If the hydrolysis step was omitted, this RNA bound only 0.12 acriflavine molecule per 100 nucleotides. Acriflavine-labeled high molecular weight yeast RNA showed a fluorescent intensity which was proportional to RNA concentration to a 1000-fold dilution.  相似文献   

15.
酵母3-脱氧葡糖醛酮代谢酶的分离纯化及部分性质   总被引:1,自引:0,他引:1  
3-脱氧葡糖醛酮 ( 3- deoxyglucosone)是美拉德反应的主要中间产物 ,对生物体具有毒性作用 .用硫酸铵分部沉淀、DEAE- cellulose52、Hydroxyapatite、DEAE- Sepharose CL- 6B柱层析从酿酒酵母 YBr-M( S.cerevisiae YBr-M)抽提液中分离纯化了 3-脱氧葡糖醛酮代谢酶 (以 NADPH为辅酶 ) .该酶是单一的分子 ,分子量为 44k D,反应最适 p H为 7.0 ,p H6.0~ 8.0之间酶活性相对稳定 ,以 3-脱氧葡糖醛酮为底物的米氏常数 Km 为 2 .2 5mmol/ L.在 35℃以下保温 30 min酶活不变 ,50℃保温 30 min后酶活损失 50 % .该酶对二羰基化合物的活性较高 ,对单羰基化合物则较低 ,其催化作用受碘乙酸、N-乙基顺丁烯二酰亚胺的抑制 ,而被β-巯基乙醇、二硫苏糖醇激活 ,催化作用必须以 NADPH为专一辅酶 ,当用 NADH代替 NADPH时 ,活力只有 5.3% .  相似文献   

16.
DNA polymerase I (DNApolI) catalyzes DNA synthesis during Okazaki fragment maturation, base excision repair, and nucleotide excision repair. Some bacterial DNApolIs are deficient in 3′–5′ exonuclease, which is required for removing an incorrectly incorporated 3′-terminal nucleotide during DNA elongation by DNA polymerase activity. The key amino acid residues in the exonuclease center of Chlamydophila pneumoniae DNApolI (CpDNApolI) are naturally mutated, resulting in the loss of 3′–5′ exonuclease. Hence, the manner by which CpDNApolI proofreads the incorrectly incorporated nucleotide during DNA synthesis warrants clarification. C. pneumoniae encodes three 3′–5′ exonuclease activities: one endonuclease IV and two homologs of the epsilon subunit of replicative DNA polymerase III. The three proteins were biochemically characterized using single- and double-stranded DNA substrate. Among them, C. pneumoniae endonuclease IV (CpendoIV) possesses 3′–5′ exonuclease activity that prefers to remove mismatched 3′-terminal nucleotides in the nick, gap, and 3′ recess of a double-stranded DNA (dsDNA). Finally, we reconstituted the proofreading reaction of the mismatched 3′-terminal nucleotide using the dsDNA with a nick or 3′ recess as substrate. Upon proofreading of the mismatched 3′-terminal nucleotide by CpendoIV, CpDNApolI can correctly reincorporate the matched nucleotide and the nick is further sealed by DNA ligase. Based on our biochemical results, we proposed that CpendoIV was responsible for proofreading the replication errors of CpDNApolI.  相似文献   

17.
The complexity of the DNA of the free-living nematode Panagrellus silusiae has been examined. Reassociation kinetics of pressure-sheared fragments (approximately 290 nucleotides) in 0.18 M Na+ at 60 degrees C showed the presence of foldback, repetitive, and unique DNA sequence elements. The three classes comprise 9.3%, 26.1%, and 61.3% of the total DNA, respectively. The mean length of the foldback duplex DNA after digestion with S1 nuclease is about 185 nucleotides. There are about 1.8 x10(4) inverted repeats per genome. Sequence arrangement was deduced from (1) renaturation kinetic profiles of long and short fragments on hydroxylapatite; (2) the pattern of renaturation of tracer DNA, labeled in vitro with 125I, of various sizes after incubation with excess short fragments; and (3) thermal denaturation behavior of DNA that had been reassociated to various C0t values. It was found that DNA fragments of the repetitive fraction that are, at least, 2000 nucleotides in length are virtually free of unique sequences. Moreover, it is estimated that the repeated segments in this species could extend for 10,000 nucleotide pairs. Thus, Panagrellus DNA lacks the pattern of extensive short period interspersion that is typified by the DNA of Xenopus.  相似文献   

18.
19.
E M Click  G Balian 《Biochemistry》1985,24(23):6685-6696
The domain structure of human plasma fibronectin was investigated by using heparin-binding and antibody reactivity of fibronectin and its proteolytically derived fragments. Digestion of human plasma fibronectin with a combination of trypsin and cathepsin D produced six major fragments. Affinity chromatography showed that one fragment (Mr 45 000) binds to gelatin and three fragments (Mr 31 000, 36 000, and 61 000) bind to heparin. The 31K fragment corresponds to NH2-terminal fragments isolated from other species. The 36K and 61K fragments are derived from a region near the C-terminus of the molecule and appear to be structurally related as demonstrated by two-dimensional peptide maps. A protease-sensitive fragment (Mr 137 000), which binds neither gelatin nor heparin but which has been shown previously to be chemotactic for cells [Postlethwaite, A. E., Keski-Oja, J., Balian, G., & Kang, A. H. (1981) J. Exp. Med. 153, 494-499], separates the NH2-terminal heparin- and gelatin-binding fragments from the C-terminal 36K and 61K heparin-binding fragments. A monoclonal antibody to fibronectin that recognized the 61K heparin-binding fragment was used to isolate a sixth fragment (Mr 34 000) that did not bind to heparin or gelatin and that represents a difference between the 61K and 36K heparin-binding fragments. Cathepsin D digestion produced an 83K heparin-binding, monoclonal antibody reactive fragment that contains the interchain disulfide bond(s) linking the two fibronectin chains at their C-termini. The data indicate that plasma fibronectin is a heterodimeric molecule consisting of two very similar but not identical chains (A and B). In contrast, enzymatic digestion of cellular fibronectin produced a 50K heparin-binding fragment lacking monoclonal antibody reactivity which suggests that the cellular fibronectin subunit is similar to the plasma A chain in enzyme susceptibility but contains a larger heparin-binding domain. A model relating the differences in the three fibronectin polypeptides to differences in published cDNA sequences is presented.  相似文献   

20.
Calponin and tropomyosin interactions.   总被引:1,自引:0,他引:1  
The interaction between chicken gizzard calponin and tropomyosin was examined using viscosity, light scattering, electron microscopy and affinity chromatography. At neutral pH, 10 mM NaCl and in the absence of Mg2+, calponin induced tropomyosin filaments to form paracrystals thus decreasing the viscosity while increasing dramatically the light scattering of the tropomyosin solution. Electron micrographs of the uranyl acetate stained calponin-tropomyosin complex showed the presence of spindle shaped paracrystals with regular striation patterns and repeating units of about 400 A. Under similar conditions, smooth muscle caldesmon also induced tropomyosin to form paracrystals. To localize the calponin-binding site on tropomyosin, binding of fragments of tropomyosin, generated by chemical and mutational means, to a calponin-affinity column was studied. The COOH-terminal tropomyosin fragment Cn1B(142-281) and the NH2-terminal fragment CSM-beta(1/8/12-227) bound to a calponin-affinity column with an affinity similar to that of intact tropomyosin; while the NH2-terminal fragment, Cn1A(11-127), did not bind, indicating that the calponin-binding site(s) resides within residues 142-227 of tropomyosin. To determine the involvement in calponin binding of the area around Cys-190 of tropomyosin, fragments with cleavage sites near or at Cys-190 were used. Thus, while fragments Cy2(190-284) and CSM-beta(1/8/12-200) bound weakly to the calponin-affinity column, fragment Cy1(1-189) did not. These results demonstrate that calponin binds to tropomyosin between residues 142 and 227, and that the integrity of the region around Cys-190 of tropomyosin is important for strong interaction between the two proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号