共查询到20条相似文献,搜索用时 0 毫秒
1.
The female gonad of Platyhelminthes shows a wide variability in its anatomical and cellular organization and submicroscopic
structure, and some characteristics may be useful for elucidating the questioned monophyly of some taxa and reconstructing
the phylogenetic tree of the group. The morphological characters of the female gonad have been subdivided into three levels:
macroscopic, microscopic and ultrastructural, and some examples with potential phylogenetic value are presented for each level.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
2.
The female gonad of Prorhynchus is heterocellular (neoophoran organization) and consists of an unpaired, elongate germovitellarium enveloped by a finely granular extracellular lamina. It is composed of a posterior germinative area where early oocytes are randomly associated with differentiating vitellocytes and a growth area with follicular organization. In each follicle a single oocyte is surrounded by a layer of vitellocytes. By electron microscopy, the oocytes showed features typical of non-vitellogenic germ cells; they had chromatoid bodies, annulate lamellae, lipid droplets and R.E.R. and Golgi complexes producing small granules with a multilamellar pattern. Vitellocytes showed features typical of secretory cells with the R.E.R. and Golgi complex developed to a great extent and involved in the production of type A and type B globules, respectively. We speculate that type A globules are shell-globules and type B globules are yolk. The structure, composition and role of vitellocyte globules of Prorhynchus are compared with those of homologous inclusions from other Platyhelminthes.Abbreviations A
type A globule
- B
type B globule
- ECL
extracellular lamina
- GC
Golgi complex
- L
lipid
- RER
rough endoplasmic reticulum
- O
oocyte
- V
vitellocyte 相似文献
3.
The ultrastructure of the female gonad of the land planarian Geoplana burmeisteri was investigated by means of electron microscopy and cytochemical techniques. It consists of two small germaria located ventral to the intestine and of two irregular, lateral rows of vitelline follicles, both enveloped by a tunica composed of an extracellular lamina and an inner sheath of accessory cells. Accessory cell projections completely surround developing oocytes and vitellocytes. The main feature of oocyte maturation is the appearance of chromatoid bodies and the development of the rough endoplasmic reticulum (RER) and Golgi complexes. These organelles appear to be correlated with the production of egg inclusions of medium electron density, about 1.5-1.8 microm in diameter, which remain scattered in the ooplasm of mature oocytes. On the basis of cytochemical tests demonstrating their glycoprotein composition, these inclusions were interpreted as residual yolk globules. Vitellocytes are typical secretory cells with well-developed RER and Golgi complexes that are mainly involved in the production of yolk globules and eggshell globules, respectively. Eggshell globules appear to arise from repeated coalescence of small Golgi-derived vesicles and, at an intermediate stage of maturation, show a multigranular pattern. Later, after vesicle fusion, they reach a diameter of 1.3-1.6 microm when completely mature and show a meandering/concentric pattern, as is typical of the situation seen in most Proseriata and Tricladida. The content of yolk globules is completely digested by pronase, while the content of eggshell globules is unaffected. Mature vitellocytes contain, in addition, a large quantity of glycogen and lipid droplets as further reserve material. On the basis of the ultrastructural characteristics of the female gonad described above and in relation to the current literature, we conclude that G. burmeisteri appears to be more closely related to the freshwater triclads, in particular to members of the Dugesiidae, than to the marine triclads. 相似文献
4.
ALESSANDRA FALLENI 《Invertebrate reproduction & development.》2013,57(1-3):285-296
Summary The female gonad of two fresh-water prorhynchids, Geocentrophora baltica and Prorhynchus stagnalis, has been investigated by means of conventional electron microscopy and cytochemical techniques. Both species have an unpaired germovitellarium located under the gut; accessory cells surround the germovitellarium of G. baltica. The germovitellarium consists of a restricted germinative area where early differentiating oocytes and vitellocytes are randomly associated, and an extensive growth area with follicular organization. Each follicle consists of a single alecithal oocyte surrounded by numerous vitellocytes. The main features of oocyte differentiation are the accumulation of lipid droplets and the appearance of Golgi complexes and small bodies possibly representing secondary lysosomes. Vitellocytes show features typical of secretory cells, including well-developed rough endoplasmic reticulum (RER) and Golgi complexes which are involved in the production of type A and type B inclusions, hi both species, type A inclusions appear first, have a glycoprotein content, do not contain polyphenols, and become localized in the peripheral cytoplasm of mature vitellocytes; they have been interpreted as eggshell forming granules. Type B inclusions are larger, have a proteinaceous content with a different structure in the two species examined, and remain scattered in the cytoplasm of mature vitellocytes; they are considered to be yolk. The finding of eggshell forming granules without polyphenols in prorhynchids contrasts with the condition in most platyhelminths that have a sclerotized eggshell formed through a tanning process of polyphenolic substances. The small bodies in the oocytes and the eggshell granules in the vitellocytes of Lecithoepitheliata differ from those observed in prolecithophorans, which have oocyte and vitellocyte inclusions similar to those of the Rhabdocoela. 相似文献
5.
Alessandra Falleni Paolo Lucchesi Claudio Ghezzani Jillian C. McDonald Hugh D. Jones 《Journal of morphology》2009,270(9):1042-1054
The female gonad of the land planarians Microplana scharffi and Microplana terrestris consists of two small germaria located ventrally in the anterior third of the body and of two ventro‐lateral rows of oblong vitelline follicles distributed between the intestinal pouches. Both these structures are enveloped by a tunica composed of an outer extracellular lamina and an inner sheath of accessory cells. Oocyte maturation is characterized by the appearance of chromatoid bodies and the development of endoplasmic reticulum and Golgi complexes. These organelles appear to be correlated with the production of egg granules with a fenestrated/granular content of medium electron density, about 4–5 μm in diameter, which remain dispersed in the ooplasm of mature oocytes. On the basis of cytochemical tests showing their glycoprotein composition, and their localization in mature oocytes, these egg granules have been interpreted as yolk. In the vitelline follicles, vitellocytes show the typical features of secretory cells with well‐developed rough endoplasmic reticulum and Golgi complexes involved in the production of eggshell globules and yolk. The eggshell globules, which appear to arise from repeated coalescences of two types of Golgi‐derived vesicles, contain polyphenols and, when completely mature, they measure about 1–1,2 μm in diameter and show a meandering/concentric content pattern as is typical of the situation observed in most Proseriata and Tricladida. Mature vitellocytes also contain a large amount of glycogen and lipids as further reserve material. On the basis of the ultrastructural features of the female gonad and in relation to the current literature the two species of rhynchodemids investigated appear to be closely related to the freshwater planarians belonging to the family Dugesiidae. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc. 相似文献
6.
Oogenesis in Actinoposthia beklemischevi (Platyhelminthes, Acoela): an ultrastructural and cytochemical study 总被引:1,自引:0,他引:1
The oogenesis of the acoel Actinoposthia beklemischevi can be divided into a previtellogenic and a vitellogenic stage. Maturing oocytes are surrounded by accessory cells (a.c.) that produce electrondense granules, the content of which is released into the space between the oocyte and a.c. and gives rise to a thin primary egg envelope. The a.c. may also contribute to yolk synthesis by transferring low molecular weight precursors to the oocyte. Two types of inclusion are produced in maturing oocytes. Type I inclusions are small, roundish granules produced by the Golgi complex. They have a proteinaceous non-polyphenolic content which is discharged in the intercellular space and produce a thicker secondary egg envelope. Type I inclusions represent eggshell-forming granules (EFGs). Type II inclusions are variably sized globules progressively changing their shape from round to crescent. They appear to be produced by the ER, contain glycoproteins and remain scattered throughout the cytoplasm in large oocytes. Type II inclusions represent yolk. The main features of oogenesis in Actinoposthia are: (a) EFGs have a non-polyphenolic composition; (b) the egg envelope has a double origin and is not sclerotinized; (c) yolk production appears to be autosynthetic. The present ultrastructural findings are compared with those from other Acoelomorpha and Turbellaria. 相似文献
7.
VITTORIO GREMIGNI 《Invertebrate reproduction & development.》2013,57(1-3):325-330
Summary The structure of the female gonad has undergone important evolutionary modifications in Platyhelminthes-Turbellaria. The primitive condition consists of single oocytes freely distributed in the parenchyma autosynthetically producing both yolk and eggshell forming granules (e.f.g.) (archoophoran level of organization). A derived condition is the presence of a compact, hetero-cellular gonad enveloped by a cellular tunica and/or an extracellular lamina-like layer and composed of germaria with alecithal oocytes and vitellaria with vitelline or yolk cells producing and accumulating both yolk and e.f.g. (neoophoran level of organization). In the last three decades the female gonad of a number of turbellarian taxa has been investigated by means of electron microscopy and cytochemistry, and several characters of oocytes and vitellocytes have been hypothesized to have a potential phylogenetic value. Some of these characters and their possible phylogenetic implications are briefly reviewed. 相似文献
8.
Ultrastructural and cytochemical aspects of the germarium and the vitellarium in Syndesmis patagonica (Platyhelminthes,Rhabdocoela, Umagillidae) 下载免费PDF全文
Alessandra Falleni Paolo Lucchesi Claudio Ghezzani Martín I. Brogger 《Journal of morphology》2014,275(6):703-719
The cytoarchitecture of the female gonad of the endosymbiont umagillid Syndesmis patagonica has been investigated using electron microscopy and cytochemical techniques. The female gonad consists of paired germaria and vitellaria located behind the pharynx in the mid‐posterior region of the body. Both the germaria and the vitellaria are enveloped by an outer extracellular lamina and an inner sheath of accessory cells which contribute to the extracellular lamina. Oocyte maturation occurs completely during the prophase of the first meiotic division. Oocyte differentiation is characterized by the appearance of chromatoid bodies and the development of endoplasmic reticulum and Golgi complexes. These organelles appear to be involved in the production of round granules, about 2–2.5 μm in diameter, with a homogeneous electron‐dense core surrounded by a granular component and a translucent halo delimited by a membrane. These egg granules migrate to the periphery of mature oocytes, are positive to the cytochemical test for polyphenol detection, are unaffected by protease and have been interpreted as eggshell granules. The mature oocytes also contain a small number of yolk granules, lipid droplets, and glycogen particles scattered throughout the ooplasm. The vitellaria are branched organs composed of vitelline follicles with vitellocytes at different stages of maturation. Developing vitellocytes contain well‐developed rough endoplasmic reticulum and small Golgi complexes involved in the production of eggshell and yolk globules. Eggshell globules are round, measure 4–5 μm in diameter, and have a mosaic‐like patterned content which contains polyphenols. The yolk globules, 2–3 μm in diameter, show a homogeneous protein content of medium electron density, devoid of polyphenols, and completely digested by protease. The mature vitellocytes also contain glycogen as further reserve material. The presence of polyphenolic eggshell granules in the oocytes and of polyphenolic eggshell globules with a mosaic‐like pattern in the vitellocytes have been considered apomorphic features of the Rhabdocoela + Prolecithophora. J. Morphol. 275:703–719, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
9.
Beate Sopott Ehlers 《Hydrobiologia》1986,132(1):137-144
Fine-structural features of female germ cells differentiating within the germaria of Otoplanella baltica and Notocaryoplanella glandulosa are documented and compared with those of other free-living platyhelminths having ectolecithal eggs.In these species, encompassed in the taxon Proseriata Lithophora, insemination of the germocytes occurs within the germaria. A sperm cell, that has penetrated a germocyte differs in special features from mature male germ cells found in the testes, in parts of the male genital system, or even in other regions of the organism. The hypothesis that dense bodies correspond to acrosomal material is supported. 相似文献
10.
Julia-Laurence Culioli Joséphine Foata Christophe Mori Antoine Orsini Bernard Marchand 《Acta zoologica》2004,85(4):245-256
Spermiogenesis in Castrada cristatispina begins with the formation of a zone of differentiation containing two centrioles with associated striated rootlets and an intercentriolar body between them. The centrioles give rise to two parallel, free flagella of the Trepaxonemata 9 + '1' pattern, growing out in opposite directions. Spermatids undergo a latero-ventral rotation of the flagella and a subsequent disto-proximal rotation of centrioles, and a distal cytoplasmic projection appears. The former rotation involves the compression of a row of microtubules and allows the recognition of a ventral side and a dorsal side. At the end of the differentiation, the centrioles and cortical microtubules lie parallel to the sperm axis. The modifications of the intercentriolar body and the migration of the nucleus and the centrioles toward the distal projection are described. The mature spermatozoon of C. cristatispina is filiform, tapered at both ends and shares several features with the other Rhabdocoela gametes. Nevertheless, the posterior extremity is capped by an electron-dense material. A gradient between mitochondria and dense bodies exists along the sperm axis. This study has enable us a phylogenetic approach of the Rhabdocoela through a comparison of the ultrastructural features of C. cristatispina with the other Rhabdocoela taxa. We propose the disto-proximal rotation of centrioles as a synapomorphy of the Rhabdocoela. 相似文献
11.
Alain De Vocht 《Hydrobiologia》1991,227(1):291-298
The ultrastructural organization of the proboscis in Mesorhynchus terminostylis is distinctly different from that in other members of the Polycystididae in which it is currently classified. The sheath epithelium is formed by three belts, all with intra-epithelial nuclei. The apical belt of the bipartite cone epithelium has a single intrabulbar nucleus, and the basal belt possesses five insunk nucleiferous cell parts behind the bulb. Six types of glands surface through the epithelia; the three types emerging through the cone epithelium can be homologized with those described for Polycistis naegelii. Only uniciliary receptors are found in the epithelium. The musculature in the bulb has a very loose appearance, and the bulbar septum appears to be a bipartite basement membrane. The septum can be considered the basement membrane of the cone epithelium as if the contractile portion of the inner longitudinal muscles have invaded the epithelium and come to lie between the epithelial cells and the basement membrane. Thus the inner musculature of the bulb is entirely intraepithelial as is the case for Psammorhynchus tubulipenis and Cytocystis clitellatus. The systematic position of M. terminostylisremains uncertain but seems to lie between Psammorhynchus and Cytocystis on one hand and Koinocystididae and Polycystididae on the other. 相似文献
12.
Klaus Rohde 《Hydrobiologia》1991,227(1):315-321
Three types of flame bulbs are distinguished in the Platyhelminthes: type 1 has two cilia arising from a terminal cell and rootlets extending along the weir; type 2 has many cilia arising from a terminal cell and the proximal canal cell closely aligned with it; and type 3 has a non-terminal perikaryon forming many flame bulbs, each with many cilia and a single row of longitudinal ribs. Each type appears in various structural forms. Type 1 is found in the Catenulida; type 2 in the Macrostomida, Polycladida, Prolecithophora, Proseriata, Tricladida, Fecampiidae, and Neodermata; and type 3 in the Rhabdocoela and Lecithoepitheliata. The most likely evolutionary sequence is that type 3 is derived from type 2 and, perhaps, that type 2 is derived from type 1. Characters of the protonephridia show that the Rhabdocoela and the Neodermata form separate phylogenetic lineages; other similarities between these taxa are due to convergent evolution (or horizontal gene transfer?). 相似文献
13.
14.
Céline Levron Jordi Miquel Mikuláš Oros Tomáš Scholz 《Biological reviews of the Cambridge Philosophical Society》2010,85(3):523-543
New data on spermiogenesis and the ultrastructure of spermatozoa of ‘true’ tapeworms (Eucestoda) are summarized. Since 2001, more than 50 species belonging to most orders of the Eucestoda have been studied or reinvestigated, particularly members of the Caryophyllidea, Spathebothriidea, Diphyllobothriidea, Bothriocephalidea, Trypanorhyncha, Tetraphyllidea, Proteocephalidea, and Cyclophyllidea. A new classification of spermatozoa of eucestodes into seven basic types is proposed and a key to their identification is given. For the first time, a phylogenetic tree inferred from spermatological characters is provided. New information obtained in the last decade has made it possible to fill numerous gaps in the character data matrix, enabling us to carry out a more reliable analysis of the evolution of ultrastructural characters of sperm and spermiogenesis in eucestodes. The tree is broadly congruent with those based on morphological and molecular data, indicating that convergent evolution of sperm characters in cestodes may not be as common as in other invertebrate taxa. The main gaps in the current knowledge of spermatological characters are mapped and topics for future research are outlined, with special emphasis on those characters that might provide additional information about the evolution of tapeworms and their spermatozoa. Future studies should be focused on representatives of those major groups (families and orders) in which molecular data indicate paraphyly or polyphyly (e.g. ‘Tetraphyllidea’ and Trypanorhyncha) and on those that have a key phylogenetic position among eucestodes (e.g. Diphyllidea, ‘Tetraphyllidea’, Lecanicephalidea, Nippotaeniidea). 相似文献
15.
The ultrastructure of the paired lateral ciliary pits in several endemic species of Geocentrophora from Lake Baikal and in one cosmopolitan species, G. baltica, has been compared and the possible functional significance is discussed. The pit is composed of two distinctive parts; the bottom of the pit is an extensive sensitive area, filled with uni-and biciliary sensory receptors with reduced rootlets and numerous neurotubules. The walls of the pit are formed by several large dark cells, characterized by a dark cytoplasm with numerous mitochondria, a large nucleus, intracellular canaliculi, basal infoldings of the cell membrane, glycogen granules and a varying number of cilia. A protruding, densely ciliated ridge occurs along the anterior wall of the pit. The cilia have a strengthened rootlet system and seem to provide a strong water current into the pit. Dark cell processes penetrate the basement membrane of the pit and come into the vicinity of large cells with a cytoplasm similar to that of the dark cells of the pit. These large cells in their turn come close to the terminal parts of the protonephridial canals, containing a weir. Smaller protonephridial capillaries without a weir seem to open directly into the pit lumen. The morphological data obtained suggest that the ciliary pit in not only a sensory structure, but plays a part in osmoregulation and ion exchange as well. 相似文献
16.
Rohde K. and Garlick P. R. 1985. Ultrastructure of the posterior sense receptor of larval Austramphilina elongata (Amphilinidea). International Journal for Parasitology15: 399–402. Eight large papillae arranged in a circle at the posterior end of the body each contain one non-ciliate receptor. The receptor is the terminal swelling of a thin dendrite; it has many large mitochondria, a basal body from which cross-striated ciliary rootlets diverge, and a bundle of long non-striated filaments. The electrondense collar is formed by several thin rings, and some desmosomes are found between the receptor and the adjacent epidermis in addition to the apical septate desmosomes. 相似文献
17.
The ultrastructure of the female reproductive system of the polyclad flatworm Pleioplana atomata is described. Numerous ovaries are scattered throughout the entire body but are mainly concentrated on the dorsal side. Within an ovary, a germinative zone with oogonia and prefolicular cells is located in the dorsal part of the ovary. The remaining part of the gonad is filled with previtellogenic and early vitellogenic oocytes enwrapped by follicular cells. During previtellogenesis, oocytes produce numerous eggshell globules, which are distributed into the cortical area of the cell in later stages. Eventually, these globules release their contents into the space between the eggshell cover and oolemma. Similar types of globules are also found in others flatworms, and may represent useful phylogenetic characters. Entolecital, vitellogenic oocytes pass to paired uteri, where vitellogenesis is completed. The remainder of the female reproductive system consists of paired thin uterine ducts that join a vagina. The distal part of the long, curved vagina forms a large Lang's vesicle, while the proximal part is connected to a female atrium leading to a female gonopore. We hypothesize that Lang's vesicle functions in the digestion of excess sperm received. Two kinds of different shell (cement) glands that release their secretion into the vagina are identified. Both are unicellular glands and each gland cell connects to the lumen of the vagina via an individual canal. Similar glands in other acotylean polyclads have been implicated in the formation of eggshell covers. J. Morphol. 2009. © 2008 Wiley‐Liss, Inc. 相似文献
18.
19.
We advocate a total-evidence approach for the reconstruction of working phylogenies for the Turbellaria and the phylum Platyhelminthes.
Few morphology-based character matrices are available in the systematic literature concerning flatworms, and molecular-based
phylogenies are rapidly providing the only means by which we can estimate phylogenies cladistically. Character matrices based
on gross morphology and ultrastructure are required and should be internally consistent, i.e. character coding should follow
a set of a priori guidelines and character duplication and contradiction is avoided. In order to test our molecular phylogenies
we need complementary data sets from morphology. To understand morphological homology we need phylogenetic evidence from independent
(e.g. molecular) data. Fully complementary morphological and molecular data sets enable us to validate phylogenetic hypotheses
and the combination of these sets in phylogenetic reconstruction utilises all statements of homology. Working phylogenies
which include all phylogenetic information not only shed light on individual character evolution, but form a strong basis
for comparative studies investigating the origin and evolutionary radiation of the taxonomic group under scrutiny.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
20.
ULF JONDELIUS 《Zoologica scripta》1992,21(3):223-230
The sperm morphology of five species of the Pterastericolidae was studied with transmission electron microscopy. The spermatozoa of all species have two axoncmes, which are incorporated in the sperm cell body for most of their length. The axonemes arc of the'9 + 1'pattern characteristic of the flatworm taxon Trepaxonemata. Outer dynein arms are absent from the microtubule doublets in the axonemes. Dense bodies are few, and occur only in the distal part of the spermatozoa, but small electron dense granules are numerous. A sister group of the Neodermata consisting of the Pterastericolidae and the Fecampidae is proposed. The monophyly of the taxon Dalyellioida is discussed 相似文献