首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Betty Klepper  H. Greenway 《Planta》1968,80(2):142-146
Summary Tomato plants were treated for one hour in nutrient solutions at-10.4 atm. Roots were excised, transferred to solutions at-0.4 atm and put into a pressure chamber to induce rates of water flow similar to those in transpiring plants.For roots continuously at-0.4 atm, the xylem sap had much higher phosphorus concentrations than the external solution, which contained 6 p.p.m. phosphorus.Roots previously treated at-10.4 atm had much lower concentrations in the sylem sap than in the external solution and the amount of phosphorus transported and the water flow were linearly related. This phosphorus transport was due to passive movement as shown by measuring transport of both 32P and 14C mannitol. Thus transport to the xylem mediated by active processes was abolished even though uptake by the roots remained substantial. These results obtained after plasmolysis support the view that radial transport to the xylem includes uptake into and movement through the symplast.  相似文献   

2.
Cotton (Gossypium hirsutum L. cv. Deltapine 15/21) plants were precultured for 19 to 25 days under controlled climatic conditions in nutrient solutions with different levels of Zn. With the onset of visual Zn-deficiency symptoms the pH of the nutrient solution decreased from 6.0 to about 5.0. In contrast, Zn-sufficient plants raised the pH of the nutrient solution to about 7.0. In short-term studies it could be demonstrated that the Zn nutritional status of the plants remarkably influenced the uptake and translocation rates of mineral nutrients. Compared to Zn-sufficient plants, P uptake rate in severely Zn-deficient plants was increased by a factor of 2 to 3, whereas the uptake rates of K, Ca and particularly NO3 decreased. The accumulation of P in the roots of Zn-deficient plants was either not affected or even lower than in Zn-sufficient plants. Thus, Zn deficiency had a specific enhancement effect on root to shoot transport of P. This enhancement effect of Zn deficiency on uptake and transport of P was similar at nutrient solution pH values of 7.0 and 5.8; i.e. it was not the result of acidification of the nutrient solution. After application of 36CI, 86Rb and 32P to plant stems, basipetal transport of 36CI and 86Rb was not affected by the Zn nutritional status of the plants. However, in Zn-deficient plants, only 7.8% of the 32P was translocated basipetally compared to 34% in the Zn-sufficient plants. A resupply of Zn for 19 h to Zn-deficient plants enhanced basipetal 32P transport. The results indicate that a feedback mechanism in the shoots is impaired in Zn-deficient plants which controls the P uptake by roots and especially the P transport from roots to shoots. As a result of this impairment toxic concentrations of P accumulate in the leaves. The mechanism responsible is likely the retranslocation of P in the phloem from shoots to roots.  相似文献   

3.
The pho2 mutant of Arabidopsis thaliana (L.) Heynh. accumulates excessive Pi (inorganic phosphate) concentrations in shoots compared to wild-type plants (E. Delhaize and P. Randall, 1995, Plant Physiol. 107: 207–213). In this study, a series of experiments was conducted to compare the uptake and translocation of Pi by pho2 with that of wild-type plants. The pho2 mutants had about a twofold greater Pi uptake rate than wild-type plants under P-sufficient conditions and a greater proportion of the Pi taken up accumulated in shoots of pho2. When shoots were removed, the uptake rate by roots was found to be similar for both genotypes, suggesting that the greater Pi uptake by the intact pho2 mutant is due to a greater shoot sink for Pi. Although pho2 mutants could recycle 32Pi from shoots to roots through phloem the proportion of 32Pi translocated to roots was less than half of that found in wild-type plants. When transferred from P-sufficient to P-deficient solutions, Pi concentrations in pho2 roots had a similar depletion rate to wild-type roots despite pho2 shoots having a fourfold greater Pi concentration than wild-type shoots throughout the experiment. We suggest that the pho2 phenotype could result from a partial defect in Pi transport in the phloem between shoots and roots or from an inability of shoot cells to regulate internal Pi concentrations. Received: 20 August 1997 / Accepted: 4 October 1997  相似文献   

4.
The distribution of NO3? reduction between roots and shoots was studied in hydro-ponically-grown peach-tree seedlings (Prunus persica L.) during recovery from N starvation. Uptake, translocation and reduction of NO3?, together with transport through xylem and phloem of the newly reduced N were estimated, using 15N labellings, in intact plants supplied for 90 h with 0.5 mM NH4+ and 0.5, 1.5 or 10 mM NO3?. Xylem transport of NO3? was further investigated by xylem sap analysis in a similar experiment. The roots were the main site of NO3? reduction at all 3 levels of NO3? nutrition. However, the contribution of the shoots to the whole plant NO3? reduction increased with increasing external NO3? availability. This contribution was estimated to be 20, 23 and 42% of the total assimilation at 0.5, 1.5 and 10 mM NO3?, respectively. Both 15N results and xylem sap analysis confirmed that this trend was due to an enhancement of NO3? translocation from roots to shoots. It is proposed that the lack of NO3? export to the shoots at low NO3? uptake rate resulted from a competition between NO3? reduction in the root epidermis/cortex and NO3? diffusion to the stele. On the other hand, net xylem transport of newly reduced N was very efficient since ca 70% of the amino acids synthesized in the roots were translocated to the shoots, regardless of the level of NO3? nutrition. This net xylem transport by far exceeded the net downward phloem transport of the reduced N assimilated in shoots. As a consequence, the reduced N resulting from NO3? assimilation, principally occurring in the roots, was mainly incorporated in the shoots.  相似文献   

5.
Effects of Water Deficit on Phosphorus Nutrition of Tomato Plants   总被引:2,自引:0,他引:2  
Measurements were made of phosphorus uptake by intact tomato plants from solutions labelled with 32P. The plants were exposed to low water potentials by the addition of mannitol to culture solutions. The amounts of labelled phosphorus in the roots and in the shoots wore determined after a one- or two-hour period. Down to -5.4 atmospheres, the amount of labelled phosphorus in the roots remained constant, hut the amount transported to the shoots was reduced. However, potentials of -10.4 atm reduced the amount of labelled phosphorus in both the root and the shoot. Similar results were obtained when plants were tested immediately after water stress was imposed and when tested after water potentials had been lowered gradually. Plants were treated for one hour at low water potentials and then returned to control solutions (?0.4 atm). For a considerable time, these plants had a much lower phosphorus uptake than plants which had remained continuously at ?0.4 atm. These data support the idea that a disturbance in mineral nutrition is partly responsible for reduced growth in plants which experience a moderate water deficit.  相似文献   

6.
H. Greenway  A. Gunn 《Planta》1966,71(1):43-67
Summary In Hordeum vulgare, phosphorus retranslocation was studied after it had been supplied to the roots for three days (experiment 1), and after foliar application (experiments 3–8). Phosphorus uptake by leaves of different ages was also measured 16 and 60 minutes after 32P addition to the medium (experiment 2).In experiment 1, treatments at 0.6 and 31 p.p.m. of phosphorus were applied when the first leaf had completed its rapid growth. The plants were then grown for three days in media labelled with 32P, and for a subsequent 10 days in non-labelled solutions. Retranslocation was measured by changes in total phosphorus and in 32P.Both root feeding, and foliar application of 32P, demonstrated three phases during leaf development: import (recently initiated leaf), export (mature leaf) and an intermediate phase with both export and import (leaf half developed).There was large transport of foliar applied 32P, from mature leaves to roots, and some of this 32P was re-exported to the shoots, including the mature leaves. Root feeding of 32P over short periods strongly suggested that phosphorus uptake by the shoots occurred via the xylem, even at low phosphorus.In experiment 1, there were distinct treatment differences in relative growth rates, growth of young organs and roots, and in phosphorus concentrations of all but the very young leaves. Mature leaves showed a large net phosphorus export at low phosphorus, but a large net import at high phosphorus. This was not due to treatment differences in export, because total export from the mature leaves was even somewhat smaller at low than at high phosphorus. The treatment differences, with net export at low but net import at high phosphorus, were thus due to the higher import in the mature leaves at high phosphorus. Total export remained at a high level throughout the experiment at high phosphorus, while it declined with time at low phosphorus.For phosphorus absorbed during early growth, both the export from the mature leaves, and the intake by the developing leaves, was independent of phosphorus treatment; i.e. for each individual organ the quantities of phosphorus involved were the same in the two phosphorus treatments. Thus, the higher phosphorus contents of developing organs at high phosphorus were obtained from phosphorus supplied to the roots during later growth, and not from phosphorus supplied during early growth of the whole plant.The data are consistent with the notion that phosphorus export is controlled in the source. It is suggested that at high phosphorus this control is due to a saturation of the sites transporting phosphorus into the phloem. At low phosphorus, on the other hand, release from individual leaf cells might have been the dominating factor.  相似文献   

7.
Potassium Translocation into the Root Xylem   总被引:9,自引:0,他引:9  
Abstract: Potassium is the most abundant cation in cells of higher plants and plays vital roles in plant growth and develop ment. Since the soil is the only source of potassium, plant roots are well adapted to exploit the soil for potassium and supply it to the leaves. Transport across the root can be divided into three stages: uptake into the root symplast, transport across the symplast and release into the xylem. Uptake kinetics of potassium have been studied extensively in the past and sug gested the presence of high and low affinity systems. Molecular and electrophysiological techniques have now confirmed the existence of discrete transporters encoded by a number of genes. Surprisingly, detailed characterisation of the transpor ters using reverse genetics and heterologous expression shows that a number of the transporters (AKT and AtKUP family) func tion both in the low (μM) and high (mM) K+ range. Electrophy siological studies indicate that K+ uptake by roots is coupled to H+, to drive uptake from micromolar K+. However, thus far only Na+ coupled K+ transport has been demonstrated (HKT1). Ion channels play a major role in the exchange of potassium be tween the symplast and the xylem. An outward rectifying chan nel (KORC) mediates potassium release. Cloning of the gene en coding this channel (SKOR) shows that it belongs to the Shaker super-family. Both electrophysiological and genetic studies demonstrate that K+ release through this channel is controlled by the stress hormone abscisic acid. Interestingly, xylem par enchyma cells of young barley roots also contain a number of in ward rectifying K+ channels that are controlled by G-proteins. The involvement of G-proteins emphasises once more that po tassium transport at the symplast/xylem boundary is under hor monal control. The role of the electrical potential difference across the symplastxylem boundary in controlling potassium release is discussed.  相似文献   

8.
Na+ and K+ transport in excised soybean roots   总被引:1,自引:0,他引:1  
Uptake, accumulation and xylem transport of K+ and Na+ in excised roots of soybean were investigated by use of a perfusion technique. This technique permitted independent quantification of, on the one hand, entry of ions into the roots and their transport through the cortex to the xylem vessels, and on the other hand reabsorption from the xylem vessels to the neighbouring cells and the external medium. Data are consistent with a low degree of selective uptake of K+ over Na+. However, Na+ depletion of the xylem stream by reabsorption limits, although weakly, its translocation to the shoots. Na+ reabsorbed is for a great part reexcreted into the external medium. The low efficiency of these processes is discussed in relation to the Na+ sensitivity of soybean.  相似文献   

9.
In the present study, we examined the effects of long- and short-term hypoxia on net uptake and transport of phosphorus to shoots of pond pine (Pinus serotina Michx.), a moderately flood-tolerant southern pine, and the influence aerenchyma formation might have in maintenance of P uptake and transport. Seedlings were grown under aerobic (250 μM O2) or hypoxic (≤50 μM O2) solution conditions for 5.3 weeks in continuously flowing solution culture containing 100 μM P. Intact seedlings were then labeled with 32P for up to 24 h to determine how short- and long-term hypoxic solution conditions affected rates of unidirectional influx and the accumulation of 32P in roots and shoots. Seedlings in the long-term hypoxic treatment were grown for 5.3 weeks in hypoxic solution and also labeled in hypoxic uptake solution. The short-term hypoxic treatments included a 24-h hypoxic pretreatment followed by time in labeled hypoxic uptake solution for seedlings grown under aerobic or hypoxic conditions; in the latter case, diffusion of atmospheric O2 entry into stem and root collar lenticels was blocked, thus removing any influence that aerenchyma formation might have had on enhancing O2 concentrations of root tissue. Although unidirectional influx rates of 32P in roots of seedlings grown under long-term hypoxic conditions were 1.4 times those of aerobically grown seedlings, accumulation of 32P in roots was similar after 24 h in labeled uptake solution. These results suggest that 32P efflux was also higher under hypoxic conditions. Higher shoot/root fresh weight ratios and lower shoot P concentrations in seedlings grown under hypoxic solution conditions suggest that the “shoot P demand” per unit root should be high. Yet accumulation of 32P in shoots was reduced by 50% after 24 h in hypoxic uptake solution. Both short-term hypoxic treatments decreased accumulation of 32P in roots by more than 50%. Short-term hypoxia decreased shoot accumulation in seedlings grown under aerobic and hypoxic conditions by 84 and 50%. respectively. Short- and long-term hypoxic conditions increased the percentage of root 32P in the nucleic acid and chelated-P pools, resulting in a significantly smaller percentage of 32P in the soluble inorganic phosphate (pi) pool, the pool available for transport to the shoot. However, a reduction in pool size or in labeling of the pool available for transport cannot fully account for the large reduction in accumulation of 32P in shoots, particularly in the short-term hypoxic treatment of aerobically grown seedlings. Our results suggest that both influx and transport of 32P to shoots of pond pine seedlings are O2-dependent processes, and that the transport of 32P to shoots may be more sensitive to hypoxic solution conditions than influx at the cortical and epidermal plasmalemma, with aerenchyma formation supporting a substantial amount of both 32P uptake and transport.  相似文献   

10.
Melastoma (Melastoma malabathricum L.) is an aluminum-accumulating woody plant that accumulates more than 10 000 mg kg–1 of aluminum (Al) in mature leaves. The influence of Al and phosphorus (P) applications on plant growth and xylem sap was examined in the present study in order to elucidate the interaction between Al-induced growth enhancement and P nutrition, and to determine the form of Al for translocation from roots to shoots. Although the Al application significantly increased the growth of Melastomaseedlings with the high P pre-treatment, and P concentrations in the leaves and Pi concentrations in the xylem sap regardless of the P pre-treatment, we could not come to the conclusion that a primary cause of the Al-induced growth enhancement in Melastoma is the stimulation of P uptake. The degree of Al-induced growth enhancement corresponded not with the P concentrations but with the Al concentrations in the plant tissue, suggesting that the Al-induced growth enhancement in Melastoma is primarily caused by Al itself in the plant tissue rather than by the stimulation of P uptake. Through the analysis of organic acids and Al in the xylem sap and plant tissue, the form of Al for translocation from roots to shoots was shown to be an Al-citrate complex that was transformed into Al-oxalate complex for Al storage in the leaves. In addition, the xylem sap of Melastoma seedlings grown in the absence of Al contained higher concentrations of malate. In the presence of Al, however, higher concentrations of citrate were found, indicating that Melastoma changes its organic acid metabolism in the presence or absence of Al; more specifically, it increases the synthesis of citrate.  相似文献   

11.
The real-time translocation of iron (Fe) in barley (Hordeumvulgare L. cv. Ehimehadaka no. 1) was visualized using the positron-emittingtracer 52Fe and a positron-emitting tracer imaging system (PETIS).PETIS allowed us to monitor Fe translocation in barley non-destructivelyunder various conditions. In all cases, 52Fe first accumulatedat the basal part of the shoot, suggesting that this regionmay play an important role in Fe distribution in graminaceousplants. Fe-deficient barley showed greater translocation of52Fe from roots to shoots than did Fe-sufficient barley, demonstratingthat Fe deficiency causes enhanced 52Fe uptake and translocationto shoots. In the dark, translocation of 52Fe to the youngestleaf was equivalent to or higher than that under the light condition,while the translocation of 52Fe to the older leaves was decreased,in both Fe-deficient and Fe-sufficient barley. This suggeststhe possibility that the mechanism and/or pathway of Fe translocationto the youngest leaf may be different from that to the olderleaves. When phloem transport in the leaf was blocked by steamtreatment, 52Fe translocation from the roots to older leaveswas not affected, while 52Fe translocation to the youngest leafwas reduced, indicating that Fe is translocated to the youngestleaf via phloem in addition to xylem. We propose a novel modelin which root-absorbed Fe is translocated from the basal partof the shoots and/or roots to the youngest leaf via phloem ingraminaceous plants.  相似文献   

12.
Selenite can be a dominant form of selenium (Se) in aerobic soils; however, unlike selenate, the mechanism of selenite uptake by plants remains unclear. Uptake, translocation and Se speciation in wheat (Triticum aestivum) supplied with selenate or selenite, or both, were investigated in hydroponic experiments. The kinetics of selenite influx was determined in short-term (30 min) experiments. Selenium speciation in the water-extractable fraction of roots and shoots was determined by HPLC-ICPMS. Plants absorbed similar amounts of Se within 1 d when supplied with selenite or selenate. Selenate and selenite uptake were enhanced in sulphur-starved and phosphorus-starved plants, respectively. Phosphate markedly increased K(m) of the selenite influx. Selenate and selenite uptake were both metabolically dependent. Selenite was rapidly converted to organic forms in roots, with limited translocation to shoots. Selenomethionine, selenomethionine Se-oxide, Se-methyl-selenocysteine and several other unidentified Se species were detected in the root extracts and xylem sap from selenite-treated plants. Selenate was highly mobile in xylem transport, but little was assimilated to organic forms in 1 d. The presence of selenite decreased selenate uptake and xylem transport. Selenite uptake is an active process likely mediated, at least partly, by phosphate transporters. Selenite and selenate differ greatly in the ease of assimilation and xylem transport.  相似文献   

13.
Root cells take up K+ from the soil solution, and a fraction of the absorbed K+ is translocated to the shoot after being loaded into xylem vessels. K+ uptake and translocation are spatially separated processes. K+ uptake occurs in the cortex and epidermis whereas K+ translocation starts at the stele. Both uptake and translocation processes are expected to be linked, but the connection between them is not well characterized. Here, we studied K+ uptake and translocation using Rb+ as a tracer in wild‐type Arabidopsis thaliana and in T‐DNA insertion mutants in the K+ uptake or translocation systems. The relative amount of translocated Rb+ to the shoot was positively correlated with net Rb+ uptake rates, and the akt1 athak5 T‐DNA mutant plants were more efficient in their allocation of Rb+ to shoots. Moreover, a mutation of SKOR and a reduced plant transpiration prevented the full upregulation of AtHAK5 gene expression and Rb+ uptake in K+‐starved plants. Lastly, Rb+ was found to be retrieved from root xylem vessels, with AKT1 playing a significant role in K+‐sufficient plants. Overall, our results suggest that K+ uptake and translocation are tightly coordinated via signals that regulate the expression of K+ transport systems.  相似文献   

14.
Nitrogen form has been shown to affect Zn uptake, translocation and storage in the Zn-hyperaccumulating plant Noccaea caerulescens but the biochemical processes are not fully understood. Organic acids and amino acids have been implicated in Zn transport and storage. This study aimed to examine the effect of N form on concentrations of organic acids and amino acids and how these metabolites correlated with Zn hyperaccumulation. Plants were grown in nutrient solution with NO3, NH4NO3 or NH4+, supplied with 50 or 300 μM Zn, and buffered at either pH 4.5 or 6.5. The metabolomic profile was determined by gas chromatography mass spectroscopy. The concentration of Zn in shoots, xylem and roots was greatest for the NO3, pH 6.5 and 300 μM Zn treatments. For all N forms, the lower growth-medium pH raised xylem sap pH but had no influence on Zn concentration or exudation rate of the xylem sap. Nitrate enhanced organic acid production while NH4+ increased amino acid production. Organic acids in the xylem were more responsive to changes in growth-medium pH than N form, and did not correlate with Zn concentration in shoots, roots or xylem. Serine might be directly involved in Zn hyperaccumulation. Phosphoric acid was associated with reduced Zn accumulation in the shoots. Malic acid was not detected in the shoots but responded to cation uptake more than to Zn specifically in the roots. Citric acid responded to cation uptake more than to Zn specifically in the shoots but did not correlate with Zn concentration in the roots or the xylem sap, or any other cations in the roots. In conclusion, organic acids in N. caerulescens are not specifically involved in Zn hyperaccumulation but are involved in regulating pH in the xylem and cation–anion balance in plants.  相似文献   

15.
Radial salt transport in corn roots   总被引:10,自引:9,他引:1       下载免费PDF全文
Yu GH  Kramer PJ 《Plant physiology》1967,42(7):985-990
Primary roots of solution-grown, 5-day-old or 6-day-old seedlings of corn (Zea mays L.) 10 to 14 cm in length were used to study radial salt transport. Measurements were made of the volume of root pressure exudation, salt concentration of the exudate, and rate of salt movement into the xylem exudate. The 32P uptake, O2 consumption, and dehydrogenase activity of the root cortex and stele also were studied.

These roots produced copious root pressure exudate containing 4 to 10 times the concentration of 32P in the external solution. Freshly separated stele from 5-day-old roots accumulated 32P as rapidly as the cortex from which it was separated and the stele of intact roots also accumulated 32P. Separated stele has a higher oxygen uptake than cortex. It also shows strong dehydrogenase activity with the tetrazolium test. The high oxygen consumption, 32P uptake and strong dehydrogenase activity indicate that the cells of the stele probably play a direct role in salt transport.

These data raise doubts concerning theories of radial salt transport into the xylem based on the assumption that the stele is unable to accumulate salt vigorously.

  相似文献   

16.
Cadmium (Cd) concentration in eggplant (Solanum melongena) fruits can be drastically reduced by grafting them with Solanum torvum rootstock. We thus examined the characteristics of Cd absorption in roots and Cd translocation from roots to shoots between S. melongena and S. torvum over 7 days using a hydroponic culture. Although there is no significant difference in Cd concentration in the roots of S. melongena and S. torvum, Cd concentration in the shoots and xylem sap was higher in S. melongena than in S. torvum. By evaluating symplastic Cd absorption in roots, using enriched isotopes 113Cd and 114Cd, and measuring the kinetics in xylem loading, we characterized Cd absorption and translocation for S. torvum (low Cd translocation) and S. melongena (high Cd translocation). A concentration-dependent study in roots indicated that Km values were almost the same for species, but the Vmax value was 1.5-fold higher in S. melongena than in S. torvum. A concentration-dependent study in xylem loading indicated that Vmax was almost the same, but Km values were approximately 7-fold higher in S. torvum compared to S. melongena. These results, together, suggest that the affinity for Cd in the xylem loading process is a critical factor for determining the different Cd concentrations in the shoots between both plants under low Cd concentration conditions. In addition, a metabolic inhibitor, carbonyl cyanide-m-chloro-phenyl-hydrazone (CCCP) inhibited Cd absorption and translocation from roots to shoots in both plants. This suggests that Cd absorption in roots and Cd translocation from roots to shoots via the xylem loading process, under low Cd concentration conditions, are partly mediated by an active energy-dependent process in both plants.  相似文献   

17.
Abstract. The role of phosphorus (P) in leaf magnesium (Mg) concentrations and photosynthesis was investigated in field and glasshouse experiments with grapevine (Vitis vinifera L., cvs. Chenin blane. Chardonnay, and Carignane). In the field, leaves of vines growing on soil with low available P exhibited symptoms of Mg deficiency and had low P and Mg concentrations. The rate of photosynthesis for leaves of untreated control vines was approximately 0.7 nmol CO2 cm 2 s 1. When P fertilizer was applied to the soil, Mg deficiency symptoms were eliminated, and leaf P and Mg concentrations increased to above critical levels. When Mg was applied as a foliar spray, leaf Mg increased to above critical levels, but leaf P did not change significantly. In both experiments, the rate of photosynthesis increased to greater than 1.0 nmol CO2 cm 2 s 1 after nutrient applications. Thus, under low soil P conditions, leaf photosynthesis was limited by leaf Mg concentrations. In glasshouse experiments in which vines were grown with and without P for three seasons, Mg accumulated in large roots of - P vines to approximately twice the concentration found in roots of + P vines. Analysis of the xylem exudate from detopped plants showed that Mg concentration in xylem sap of + P vines was twice as great as that in - P vines. When P was supplied to - P vines, the concentration of Mg increased to the concentration of + P vines within 2 days. The results show that the translocation of Mg from roots to shoots of grapevine is dependent upon P supply to the roots and suggest that Mg translocation is more sensitive than uptake to P supply.  相似文献   

18.
J. B. Bole 《Plant and Soil》1977,46(2):297-307
Summary Direct measurements were made of 3HHO and 32P taken up from labelled soil by roots of wheat (Triticum aestivum L.) and rape (Brassica campestris L.). Single roots were encased in labelled soil for 3 days, and the amount of 3HHO and 32P retained in the shoots was determined. Plants were grown to five stages of maturity in growth boxes under controlled conditions. Roots were labelled at up to four depths (to 90 cm) depending on the rooting depth at each stage of maturity. Uptake of 3HHO per unit length of root increased as the plant age increased, while uptake of 32P decreased to below detection levels by 45 days after germination. Larger amounts of both nutrients were translocated to and retained in the shoots from surface roots than from roots located deeper in the soil although the soil was uniform in temperature, bulk density, and composition throughout the growth boxes. Wheat roots were more efficient than rape roots in absorbing 3HHO; however, rape roots took up larger amounts of 32P per unit length of root. Neither native nor added P located more than 30 cm deep is of much importance to these annual crops, since uptake is minimal and the main demand for this nutrient occurs at early growth stages when the root system is restricted to the surface layers. re]19750812  相似文献   

19.
Erenoglu  B.  Nikolic  M.  Römheld  V.  Cakmak  I. 《Plant and Soil》2002,241(2):251-257
Using two bread wheat (Triticum aestivum) and two durum wheat (Triticum durum) cultivars differing in zinc (Zn) efficiency, uptake and translocation of foliar-applied 65Zn were studied to characterize the role of Zn nutritional status of plants on the extent of phloem mobility of Zn and to determine the relationship between phloem mobility of Zn and Zn efficiency of the used wheat cultivars. Irrespective of leaf age and Zn nutritional status of plants, all cultivars showed similar Zn uptake rates with application of 65ZnSO4 to leaf strips in a short-term experiment. Also with supply of 65ZnSO4 by immersing the tip (3 cm) of the oldest leaf of intact plants, no differences in Zn uptake were observed among and within both wheat species. Further, Zn nutritional status did not affect total uptake of foliar applied Zn. However, Zn-deficient plants translocated more 65Zn from the treated leaf to the roots and remainder parts of shoots. In Zn-deficient plants about 40% of the total absorbed 65Zn was translocated from the treated leaf to the roots and remainder parts of shoots within 8 days while in Zn-sufficient plants the proportion of the translocated 65Zn of the total absorbed 65Zn was about 25%. Although differences in Zn efficiency existed between the cultivars did not affect the translocation and distribution of 65Zn between roots and shoots. Bread wheats compared to durum wheats, tended to accumulate more 65Zn in shoots and less 65Zn in roots, particularly under Zn-deficient conditions. The results indicate that differences in expression of Zn efficiency between and within durum and bread wheats are not related to translocation or distribution of foliar-applied 65Zn within plants. Differential compartementation of Zn at the cellular levels is discussed as a possible factor determining genotypic variation in Zn efficiency within wheat.  相似文献   

20.
Liao  M. T.  Hedley  M. J.  Woolley  D. J.  Brooks  R. R.  Nichols  M. A. 《Plant and Soil》2000,221(2):135-142
The uptake and distribution of copper was examined in chicory (Cichorium intybus L. cv. Grasslands Puna) and tomato (Lycopersicon esculentumMill. cv. Rondy) plants grown in a Nutrient Film Technique System (NFT) with addition of 0.05, 5, 10 and 20 mg Cu L-1. Biomass production of shoots and roots of both chicory and tomato was strongly depressed by Cu concentrations higher than 5 mg Cu L-1 in the rooting media. Although Cu concentrations in both shoots and roots of both species increased with increasing Cu concentrations in the rooting media, the increase in roots was very much greater than that in shoots, in which the range of concentrations was small. A large proportion of total Cu uptake was retained by roots except when plants were grown in solution Cu concentrations of 0.05 mg Cu L-1. Copper retention by roots limited Cu translocation to xylem and shoots. Copper adsorption by the root appears to buffer against increases of Cu in the rooting media. A cupric-sensitive electrode used in conjunction with total Cu analysis by graphite furnace atomic absorption spectrophotometry (GFAAS) indicated that more than 99.6% of total Cu in xylem sap was in a complexed form. Large differences between measured and predicted Cu accumulation by shoots of tomato (0.134–0.243 mg Cu plant-1, 0.660–4.274 mg Cu plant-1, respectively) and chicory (0.095–0.203 mg Cu plant-1, 0.626–1.620 mg Cu plant-1, respectively) suggest that some xylem transported Cu is recirculated to roots via the phloem. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号