首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
白细胞介素-2引起离体大鼠主动脉环舒张及其作用机制   总被引:18,自引:2,他引:18  
Cao CM  Ye S  Yu H  Xu QS  Ye ZG  Shen YL  Lu Y  Xia Q 《生理学报》2003,55(1):19-23
本文旨在研究白细胞介素-2(interleukin-2,IL-2)以离体大鼠胸主动脉环收缩张力的作用及其可能机制。采用累积加药法,检测IL-2对去氧肾上腺素(PE)和KCl预收缩的胸主动脉环收缩张力的影响。结果表明,IL-2(1、10、100、1000U/ml)对PE(10μmol/L)预收缩的内皮完整血管环产生浓度依赖性的舒张作用,而对KCl (120mmol/L)预收缩的血管无作用,去除内皮后,IL-2的舒张作用被取消。用一氧化氮合酶抑制剂L-NAME(0.1mmol/L)和鸟苷酸环化酶抑制剂亚甲蓝(10μmol/L)预处理,均可阻断IL-2的舒张血管作用。用环氧合酶抑制剂吲哚美辛(Indo,10μmol/L)预处理可阻断IL-2的血管舒张作用。从上述观察结果推论,IL-2通过NO-鸟苷酸环化酶和环氧合酶途径产生内皮依赖的血管舒张作用。  相似文献   

2.
The presence of histamine H(3) receptors was evaluated on the rat aorta endothelium. In the presence of pyrilamine (1 nM, 7 nM, 10 nM) or thioperamide (1 nM, 10 nM, 30 nM) the concentration-response curve for histamine-induced (0.1 nM - 0.01 mM) endothelium-dependent rat aorta relaxation was shifted to the right without significant change of the E(max) indicating competitive antagonism by pyrilamine (pA(2) = 9.33 +/- 0.34, slope = 1.09 +/- 0.36) or thioperamide (pA(2) =9.31 +/- 0.16, slope=0.94 +/- 0.10). Cimetidine (1 muM) did not influence histamine-induced endothelium-dependent rat aorta relaxation. In the presence of thioperamide (1 nM, 10 nM, 30 nM) the concentration-response curve for (R)alpha-MeHA-induced (0.1 nM - 0.01 mM) endothelium-dependent relaxation was shifted to the right without significant change of E(max) indicated competitive antagonism by thioperamide (pA(2) = 9.21 +/- 0.4, slope = 1.03 +/- 0.35). Pyrilamine (100 nM) or cimetidine (1 muM) did not influence (R)alpha-MeHA-induced endothelium-dependent rat aorta relaxation. These results suggest the presence of a heterogenous population of histamine receptors, H(1) and H(3), on rat aorta endothelium.  相似文献   

3.
The mechanism of captopril, an angiotensin converting enzyme (ACE) inhibitor with sulfhydryl group (SH) in its structure, to produce an endothelium-dependent vasorelaxation was studied. In rabbit aorta with intact endothelium and precontracted with phenylephrine, captopril and superoxide dismutase (SOD) produced dose-dependent relaxation. Lisinopril, an ACE inhibitor without a -SH group in its structure, did not produce endothelium-dependent relaxation. It was observed that captopril, like SOD, produced the relaxation by protecting the EDRF from getting inactivated by superoxide anions as pyrogallol and methylene blue inhibited both the captopril and SOD-mediated relaxation. The free radical scavenging action of captopril is further substantiated by the observation that captopril, but not lisinopril, inhibited FeCl3/ascorbic acid-induced lipid peroxidation in whole tissue homogenates of rabbit aorta to a level comparable to that of SOD. These results suggest that endothelium-dependent vasodilation produced by captopril may be due to its ability to scavenge superoxide anion and this property may be ascribed to the -SH group present in its structure.  相似文献   

4.
Endothelium-dependent relaxation of aortas was studied in dietary copper (Cu) deficiency. Male, weanling Sprague-Dawley rats were fed diets deficient (CuD, less than 0.5 ppm) or adequate (CuA, 5.0-5.5 ppm) in Cu for 4 weeks. Aortic rings from paired Cu-deficient and Cu-adequate rats were isolated from the descending thoracic aorta, placed in tandem tissue baths, and attached to force transducers. Aortas were contracted with phenylephrine (3 x 10(-7) M) and the degree of force reduction was measured after successively increasing the dose of acetylcholine (10(-8)-10(-5) M), histamine 10(-6)-10(-3) M), or sodium nitroprusside (10(-9)-10(-6) M). Cu deficiency was found to significantly reduce the relaxation responses of each relaxing agent at the highest three of the four doses tested. The ability of Cu-adequate and Cu-deficient aortas to relax was not different, as indicated by their complete relaxation in response to 10(-4) or 10(-5) M papaverine. Because the relaxation responses to both acetylcholine and histamine in rat aorta are dependent on the presence of endothelium, the reduction of these responses suggests that endothelium, or its interaction with smooth muscle, was disrupted in dietary Cu deficiency. The reduction in response to sodium nitroprusside, an endothelium-independent analog of endothelium-derived relaxing factor, indicates that the interaction of endothelium-derived relaxing factor with smooth muscle was disrupted. These findings have implications regarding blood pressure regulation in Cu deficiency.  相似文献   

5.
Zhu BH  Guan YY  He H  Lin MJ 《Life sciences》1999,65(15):1553-1559
We examined the endothelium-dependent relaxation response to acetylcholine (Ach) in streptozotocin-induced diabetic rat aorta at the stages of 2- and 6-wks' duration in vitro, and compared with another two groups which were treated with dietary supplement of 0.1% Aminoquanidine (AG) and 0.5% Erigeron breviscapus (EB) from 1-week of diabetes induction. At the stage of 2-wks' duration of diabetes, relaxation responses to lower concentrations of Ach in 0.3 uM phenylepherine-precontracted aortas were diminished significantly (P<0.05) compared with age-matched control, but the maximal relaxation of Ach remained unchanged. At the stage of 6-wks' duration, diabetes caused an approximately 60% (P<0.001) deficit in maximum relaxation, and this was significantly (P<0.001) prevented in AG and EB treated groups. There was an approximately 40% enhancement in the maximum contractile response to phenylepherine with diabetes (P<0.05), which was unaffected significantly by AG and EB treatments. The data suggest that the defective endothelium-dependent relaxation in diabetic rat aorta occurred as early as 2-wks' duration of diabetes, and the treatments of AG and EB could protect vascular endothelium although the deficits in vascular smooth muscle contractile responses were not protected.  相似文献   

6.
IL-6 is elevated in plasma of preeclamptic women, and twofold elevation of plasma IL-6 increases vascular resistance and arterial pressure in pregnant rats, suggesting a role of the cytokine in hypertension of pregnancy. However, whether the hemodynamic effects of IL-6 reflect direct effects of the cytokine on the mechanisms of vascular contraction/relaxation is unclear. The purpose of this study was to test the hypothesis that IL-6 directly impairs endothelium-dependent relaxation and enhances vascular contraction in systemic vessels of pregnant rats. Active stress was measured in aortic strips isolated from virgin and late pregnant Sprague-Dawley rats and then nontreated or treated for 1 h with IL-6 (10 pg/ml to 10 ng/ml). In endothelium-intact vascular strips, phenylephrine (Phe, 10(-5) M) caused an increase in active stress that was smaller in pregnant (4.2 +/- 0.3) than virgin rats (5.1 +/- 0.3 x 10(4) N/m(2)). IL-6 (1,000 pg/ml) caused enhancement of Phe contraction that was greater in pregnant (10.6 +/- 0.7) than virgin rats (7.5 +/- 0.4 x 10(4) N/m(2)). ACh and bradykinin caused relaxation of Phe contraction and increases in vascular nitrite production that were greater in pregnant than virgin rats. IL-6 caused reductions in ACh- and bradykinin-induced vascular relaxation and nitrite production that were more prominent in pregnant than virgin rats. Incubation of endothelium-intact strips in the presence of N(omega)-nitro-L-arginine methyl ester (10(-4) M) to inhibit nitric oxide (NO) synthase, or 1H-[1,2,4]oxadiazolo[4,3]-quinoxalin-1-one (ODQ, 10(-5) M) to inhibit cGMP production in smooth muscle, inhibited ACh-induced relaxation and enhanced Phe-induced stress in nontreated but to a lesser extent in IL-6-treated vessels, particularly those of pregnant rats. Removal of the endothelium enhanced Phe-induced stress in nontreated but not IL-6-treated vessels, particularly those of pregnant rats. In endothelium-denuded strips, relaxation of Phe contraction with sodium nitroprusside, an exogenous NO donor, was not different between nontreated and IL-6-treated vessels of virgin or pregnant rats. Thus IL-6 inhibits endothelium-dependent NO-cGMP-mediated relaxation and enhances contraction in systemic vessels of virgin and pregnant rats. The greater IL-6-induced inhibition of vascular relaxation and enhancement of contraction in systemic vessels of pregnant rats supports a direct role for IL-6 as one possible mediator of the increased vascular resistance associated with hypertension of pregnancy.  相似文献   

7.
An aqueous extract of Schizandra chinensis fruit (ScEx) has long been used to promote the vascular health of postmenopausal women in Korea. This study investigated the ability of ScEx to relax rat aorta constricted with norepinephrine (NE) and the mechanism(s) of such relaxation. ScEx induced partial, endothelium-dependent relaxation. In particular, the relaxation induced by lower concentrations of ScEx (0.1 and 0.3 mg/ml) was largely endothelium-dependent, and was essentially abolished by NG-nitro-l-arginine, methylene blue, 1H-[1,2,3] oxadiazole [4,4-a] quinoxalin-1-one, indomethacin, or ICI 182,780. The results indicate that the response to ScEx involves enhancement of the nitric oxide (NO)-cGMP system, and that it occurs via estrogen receptors. The magnitude of the inhibition with these treatments decreased with increasing ScEx concentration, however, indicating that other vasorelaxation mechanisms are involved, which depend on the ScEx concentration. Calcium concentration-dependent contraction curves in high potassium depolarization medium were shifted significantly to the right and downward after incubation with ScEx (0.3 and 1.0 mg/ml), implying that ScEx is also involved in inhibition of the extracellular calcium influx to vascular smooth muscle. These data demonstrate that ScEx caused both endothelium-dependent and -independent vasorelaxation, which may contribute to understanding the cardiovascular protective effect of ScEx.  相似文献   

8.
T Sata  J Linden  L W Liu  E Kubota  S I Said 《Peptides》1988,9(4):853-858
We have investigated VIP-induced relaxation and cyclic AMP accumulation in rat thoracic aorta strips, and the importance of endothelium to both actions. The relaxation was greatly attenuated by removal of endothelium, but was unaltered by cyclo-oxygenase or lipoxygenase inhibitors. Similarly, cyclic AMP formation was nearly abolished with loss of endothelium, but was largely unaffected by inhibitors of arachidonate pathways, cytochrome P450 or guanylate cyclase. VIP may stimulate the release of a diffusible factor from endothelium (an EDRF), which activates adenylate cyclase and relaxes aortic smooth muscle.  相似文献   

9.
Incubation of rabbit aortic rings with interleukin-1 (100 U/ml) in vitro led to a depressed contractile response to norepinephrine, whether the endothelium was present or not. In both cases norepinephrine-induced contraction was restored in the presence of NG-methyl-L-arginine (300 microM), an inhibitor of nitric oxide synthesis. In interleukin-1-treated rings precontracted with norepinephrine (1 microM), the relaxing response to acetylcholine was totally suppressed independently on the presence of endothelium. High concentrations of acetylcholine (greater than 1 microM) induced a slight contraction which was of lower amplitude than that obtained in control endothelium-denuded rings and was increased in the presence of NG-methyl-L-arginine. These results show that interleukin-1 (i) affects not only vascular contraction but also relaxation and (ii) involves both endothelial and non-endothelial factors. These observations suggest an impairment of the whole vascular reactivity during septic shock.  相似文献   

10.
Levobupivacaine is a long-acting local anesthetic that intrinsically produces vasoconstriction in isolated vessels. The goals of this study were to investigate the calcium-dependent mechanism underlying levobupivacaine-induced contraction of isolated rat aorta in vitro and to elucidate the pathway responsible for the endothelium-dependent attenuation of levobupivacaine-induced contraction. Isolated rat aortic rings were suspended to record isometric tension. Cumulative levobupivacaine concentration-response curves were generated in either the presence or absence of the antagonists verapamil, nifedipine, SKF-96365, 2-aminoethoxydiphenylborate, Gd(3+), N(W)-nitro-l-arginine methyl ester (L-NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), and methylene blue, either alone or in combination. Verapamil, nifedipine, SKF-96365, 2-aminoethoxydiphenylborate, low calcium concentrations, and calcium-free Krebs solution attenuated levobupivacaine-induced contraction. Gd(3+) had no effect on levobupivacaine-induced contraction. Levobupivacaine increased intracellular calcium levels in vascular smooth muscle cells. L-NAME, ODQ, and methylene blue increased levobupivacaine-induced contraction in endothelium-intact aorta. SKF-96365 attenuated calcium-induced contraction in a previously calcium-free isotonic depolarizing solution containing 100?mmol/L KCl. Levobupivacaine-induced contraction of rat aortic smooth muscle is mediated primarily by calcium influx from the extracellular space mainly via voltage-operated calcium channels and, in part, by inositol 1,4,5-trisphosphate receptor-mediated release of calcium from the sarcoplasmic reticulum. The nitric oxide - cyclic guanosine monophosphate pathway is involved in the endothelium-dependent attenuation of levobupivacaine-induced contraction.  相似文献   

11.
Myosin light chain phosphorylation in intact rat thoracic aorta was elevated during contraction induced by 0.3 microM norepinephrine, but was not maintained. Addition of 0.5 microM sodium nitroprusside to norepinephrine treated rat aorta strips led to elevation of cyclic GMP levels, relaxation of tension, and dephosphorylation of myosin light chain. Depletion of extracellular calcium or addition of calmodulin antagonists trifluoperazine and W7 diminished the contraction and phosphorylation of myosin light chain by norepinephrine, but did not prevent dephosphorylation by sodium nitroprusside or the elevated levels of cyclic GMP. Isoproterenol, 8-bromo cyclic GMP, and dibutyryl cyclic AMP all caused dephosphorylation of myosin light chain and induced relaxation during the period of development of tone. Eight other proteins had increased phosphorylation following norepinephrine treatment and one protein had less phosphorylation. The different proteins phosphorylated by norepinephrine showed varying degrees of sensitivity to Ca2+-free solution and to the calmodulin antagonists. The pattern of protein phosphorylation caused by sodium nitroprusside was best mimicked by 8-bromo cyclic GMP, rather than isoproterenol and dibutyryl cyclic AMP. These proteins were, generally, unaffected by Ca2+-free solution and the calmodulin antagonists. The present observations support the hypothesis that vasodilators inhibit tone development through myosin light chain dephosphorylation. Furthermore, the nitrovasodilators act through elevation of cyclic GMP and phosphorylation of proteins by cyclic GMP-dependent protein kinase.  相似文献   

12.
Experiments were designed to assess the effect of cholesterol feeding on the endothelium-mediated relaxation of the rabbit aorta to acetylcholine. Age-matched male New Zealand white rabbits were fed either a 2% cholesterol diet or standard rabbit chow. The animals were anaesthetized with sodium pentobarbitone and sacrificed after 4 and 8 weeks on these diets. Rings were prepared from the proximal thoracic aorta and examined in tissue baths. These rings were contracted first with norepinephrine (-6 log mol/L) and acetylcholine was added to demonstrate the endothelium-mediated relaxation. The endothelium-dependent relaxation was significantly less in aortas from rabbits fed the 2% cholesterol diet than in aortas from animals fed the conventional diet. This impairment of relaxation was apparent after both 4 and 8 weeks of cholesterol feeding. In both groups of animals no relaxation was seen in rings from which the endothelium was removed. These results show that cholesterol feeding leads to an impairment of endothelium-mediated relaxation of the rabbit aorta to acetylcholine.  相似文献   

13.
L-Arginine is a common substrate for the enzymes arginase and nitric oxide synthase (NOS). Acute inhibition of arginase enzyme activity improves endothelium-dependent vasorelaxation, presumably by increasing availability of substrate for NOS. Arginase is activated by manganese (Mn), and the consumption of a Mn-deficient (Mn-) diet can result in low arginase activity. We hypothesize that endothelium-dependent vasorelaxation is greater in rats fed Mn- versus Mn sufficient (Mn+) diets. Newly weaned rats fed Mn+ diets (0.5 microg Mn/g; n = 12) versus Mn+ diets (45 microg Mn/g; n = 12) for 44 +/- 3 days had (i) lower liver and kidney Mn and arginase activity (P < or = 0.05), (ii) higher plasma L-arginine (P < or = 0.05), (iii) similar plasma and urine nitrate + nitrite, and (iv) similar staining for endothelial nitric oxide synthase in thoracic aorta. Vascular reactivity of thoracic aorta (approximately 720 microm i.d.) and small coronary arteries (approximately 110 microm i.d.) was evaluated using wire myographs. Acetylcholine (ACh; 10(-8)-10(-4) M) produced greater (P < or = 0.05) vasorelaxation in thoracic aorta from Mn- rats (e.g., maximal percent relaxation, 79 +/- 7%) versus Mn + rats (e.g., maximal percent relaxation, 54 +/- 9%) at 5 of 7 evaluated doses. Tension produced by NOS inhibition using N(G) monomethyl-L-arginine (L-NMMA; 10(-3) M) and vasorelaxation evoked by (i) arginase inhibition using difluoromethylornithine (DFMO; 10(-7) M), (ii) ACh (10(-8)-10(-4) M) in the presence of DFMO, and (iii) sodium nitroprusside (10(-9)-10(-4) M) were unaffected by diet. No differences existed between groups concerning these responses in small coronary arteries. These findings support our hypothesis that endothelium-dependent vasorelaxation is greater in aortic segments from rats that consume Mn- versus Mn+ diets; however, responses from small coronary arteries were unaffected.  相似文献   

14.
The effects of MnCl2 on vascular smooth muscle contraction induced by noradrenaline (NA) and KCl were investigated. Rings segments from rat aorta were isolated and changes in isometric tension recorded. MnCl2 (10 microM and 1 mM) significantly attenuated the contractile responses to NA and KCI. There were also reductions in the contractile responses to CaCl2 in NA- and KCl-stimulated rings, after pretreatment with MnCl2. The magnitude of the phasic contraction to NA was significantly reduced in presence of MnCl2. The results suggest that MnCl2 inhibits vascular smooth muscle contraction by influencing a Ca2+-mediated mechanism.  相似文献   

15.
Spontaneously hypertensive rats (SHRs) were administered the red wine polyphenol resveratrol in drinking water at 0, 0.448, or 4.48 mg/l (control, low, or high, respectively) for 28 days. The low dosage was chosen to mimic moderate red wine consumption. After the treatment period, thoracic aorta rings were excised for in vitro assessment of vasomotor function. Chronic resveratrol significantly improved endothelium-dependent relaxation to acetylcholine (Ach), increasing maximal values to 80.8% +/- 5.2% and 80.8% +/- 5.0% in low and high groups, respectively, compared with 60.7% +/- 1.4% in controls (P<0.01). This treatment effect was eliminated in the presence of the endothelial nitric oxide synthase (eNOS) blocker N(omega)-nitro-L-arginine methyl ester. Resveratrol did not affect relaxation to sodium nitroprusside or systolic blood pressure in SHRs. In contrast to the SHR results, chronic resveratrol in Sprague Dawley rats did not affect vasomotor function in aorta rings in response to Ach. Hydrogen peroxide was reduced in the SHR thoracic aorta by a high dosage of resveratrol (P<0.05), but it was not significantly altered in other tissues tested. Thoracic aorta immunoblots revealed no significant treatment effects in SHRs on eNOS, superoxide dismutases 1 and 2, gp91phox, or Hsp90. Thus, these data provide novel evidence of improved endothelium-dependent vasorelaxation in hypertensive, but not normotensive, animals as a result of chronic resveratrol consumption mimicking dosages resulting from moderate red wine consumption. This response was not dependent on increases in eNOS expression but was dependent on improved NO bioavailability.  相似文献   

16.
17.
Visfatin is a novel adipocyte-derived cytokine. We hypothesized that visfatin could directly affect vascular reactivity. To test the hypothesis, effects of visfatin on contraction of isolated blood vessels were examined. In endothelium-intact rat aorta, pretreatment with visfatin (100 ng/ml, 30 min) inhibited noradrenaline (NA; 1 nM-1 μM)-induced contraction. In NA (100 nM)-pre-contracted aorta, visfatin (1-100 ng/ml) directly induced a relaxation. Although an NG-Nitro-l-arginine methyl ester (300 μM, 15 min) inhibited the relaxation, an insulin receptor inhibitor, AGL2263 (10 μM, 20 min) was ineffective. Visfatin (100 ng/ml, 20 min) induced a phosphorylation of eNOS at serine 1177 and a de-phosphorylation of eNOS at threonine 495. Visfatin also induced a phosphorylation of Akt at serine 473 and a substrate of cGMP-dependent protein kinase, vasodilator stimulated phosphoprotein at serine 239. Present study revealed for the first time that visfatin has a vasodilating effect on isolated blood vessels, which is mediated via endothelium-derived NO.  相似文献   

18.
Excessive accumulation of reactive oxygen species (ROS) in adipose tissue has been implicated in the development of insulin resistance and type 2 diabetes. However, emerging evidence suggests a physiologic role of ROS in cellular signaling and insulin sensitivity. In this study, we demonstrate that pharmacologic depletion of the antioxidant glutathione in mice prevents diet-induced obesity, increases energy expenditure and locomotor activity, and enhances insulin sensitivity. These observations support a beneficial role of ROS in glucose homeostasis and warrant further research to define the regulation of metabolism and energy balance by ROS.  相似文献   

19.
We evaluated the vasorelaxation effects of formononetin, an isoflavone/phytoestrogen found abundantly in Astragalus mongholicus Bunge, on rat isolated aorta and the underlying mechanisms involved. Cumulative administration of formononetin, genistein, daidzein and biochanin A relaxed phenylephrine-preconstricted aorta. Formononetin and biochanin A caused a similar magnitude of relaxation whereas daidzein was least potent. Mechanical removal of endothelium, L-NAME (100 μM) and methylene blue (10 μM) suppressed formononetin-induced relaxation. Formononetin increased endothelial nitric oxide (NO) synthase (eNOS), but not inducible NO synthase, activity with an up-regulation of eNOS mRNA and p-eNOSSer1177 protein expression. In endothelium-denuded preparations, formononetin-induced vasorelaxation was significantly reduced by glibenclamide (3 μM) and iberiotoxin (100 nM), and a combination of glibenclamide (3 μM) plus iberiotoxin (100 nM) abolished the relaxation. In contrast, formononetin-elicited endothelium-independent relaxation was not altered by ICI 182,780 (10 μM, an estrogen receptor (ERα/ERβ) antagonist) or mifepristone (10 μM, a progesterone receptor antagonist). In single aortic smooth muscle cells, formononetin caused opening of iberiotoxin-sensitive Ca2+-activated K+ (BKCa) channels and glibenclamide-sensitive adenosine triphosphate (ATP)-dependent K+ (KATP) channels. Thus, our results suggest that formononetin caused vascular relaxation via endothelium/NO-dependent mechanism and endothelium-independent mechanism which involves the activation of BKCa and KATP channels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号