首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By day-90, the placenta secretes half of the circulating progesterone and 85% of the circulating estradiol-17beta [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22; Weems YS, Vincent DL, Nusser K, et al. Effects of prostaglandin F(2alpha) (PGF(2alpha)) on secretion of estradiol-17beta and cortisol in 90-100 day hysterectomized, intact, or ovariectomized pregnant ewes. Prostaglandins 1994;48:139-57]. Ovariectomy (OVX) or prostaglandin (PG) F(2alpha) (PGF(2alpha)) does not abort intact or OVX 90-day pregnant ewes and PGF(2alpha) regresses the corpus luteum, but does not affect placental progesterone secretion in vivo [Weems YS, Vincent D, Tanaka Y, et al. Effects of prostaglandin F(2alpha) on sources of progesterone and pregnancy in intact, ovariectomized, and hysterectomized 90-100 day pregnant ewes. Prostaglandins 1992;43:203-22]. Luteal progesterone secretion in vitro at day-90 of pregnancy in ewes is regulated by PGE(1)and/or PGE(2), not by ovine luteinizing hormone (LH; 3). Concentrations of PGE in uterine or ovarian venous plasma averaged 6 ng/ml at 90-100 days of pregnancy in ewes [Weems YS, Vincent DL, Tanaka Y, Nusser K, Ledgerwood KS, Weems CW. Effect of prostaglandin F(2alpha) on uterine or ovarian secretion of prostaglandins E and F(2alpha) (PGE; PGF(2alpha)) in vivo in 90-100 day hysterectomized, intact or ovariectomized pregnant ewes. Prostaglandins. 1993;46:277-96]. Ovine placental PGE secretion is regulated by LH up to day-50 and by pregnancy specific protein B (PSPB) after day-50 of pregnancy [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73]. Indomethacin (INDO), a prostaglandin synthesis inhibitor [Lands WEM. The biosynthesis and metabolism of prostaglandins. Annu Rev Physiol 1979;41:633-46], lowers jugular venous progesterone [Bridges PJ, Weems YS, Kim L, et al. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24] and inferior vena cava PGE of pregnant ewes with ovaries by half at day-90 [Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. In addition, treatment of 90 day ovine diced placental slices with androstenedione in vitro increased placental estradiol-17beta, but treatment with PGF(2alpha)in vitro did not decrease placental progesterone secretion, which indicates that ovine placenta progesterone secretion is resistant to the luteolytic action of PGF(2alpha) [Weems YS, Bridges PJ, LeaMaster BR, Sasser RG, Vincent DL, Weems CW. Secretion of progesterone, estradiol-17beta, prostaglandins (PG) E (PGE), F(2alpha) (PGF(2alpha)), and pregnancy specific protein B (PSPB) by day 90 intact or ovariectomized pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:139-48]. This also explains why ovine uterine secretion of decreased around day-50 [Weems YS, Kim L, Humphreys V, Tsuda V, Weems CW. Effect of luteinizing hormone (LH), pregnancy specific protein B (PSPB), or arachidonic acid (AA) on ovine endometrium of the estrous cycle or placental secretion of prostaglandins E(2) (PGE(2)) and F(2alpha) (PGF(2alpha)), and progesterone in vitro. Prostaglandins Other Lipid Mediators 2003;71:55-73], when placental estradiol-17beta secretion is increasing [Weems C, Weems Y, Vincent D. Maternal recognition of pregnancy and maintenance of gestation in sheep. In: Reproduction and animal breeding: advances and strategies. Enne G, Greppi G, Lauria A, editors, Elsevier Pub., Amsterdam 1995. p. 277-93]. Treatment of 90 day pregnant ewes with estradiol-17beta+ PGF(2alpha), but not either treatment alone, caused a linear increase in both estradiol-17beta and PGF(2alpha) and ewes were aborting [Bridges PJ, Weems YS, Kim L, Sasser RG, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on pregnancy, progesterone and pregnancy specific protein B (PSPB) secretion in 88-90 day pregnant ewes. Prostaglandins Other Lipid Mediators 1999;58:113-24; Bridges PJ, Weems YS, Kim L, LeaMaster BR, Vincent DL, Weems CW. Effect of prostaglandin F(2alpha) (PGF(2alpha)), indomethacin, tamoxifen or estradiol-17beta on prostaglandin E (PGE), PGF(2alpha) and estradiol-17beta secretion in 88-90 day pregnant sheep. Prostaglandins Other Lipid Mediators 1999;58:167-78]. Pregnant ewes OVX on day 83 of pregnancy and placental slices cultured in vitro secretes 2-3-fold more estradiol-17beta, PSPB, PGE, and progesterone than placental slices from 90 day intact pregnant ewes, but placental PGF(2alpha) secretion by placental slices from intact or OVX ewes did not change [Denamur R, Kann G, Short R V. How does the corpus luteum of the sheep know that there is an embryo in the uterus? In: Pierrepont G, editor. Endocrinology of pregnancy and parturition, vol. 2. Cardiff, Wales, UK: Alpha Omega Pub Co.; 1973. p. 4-38]. The objective of these experiments was to determine what regulates ovine placental progesterone and estradiol-17beta secretion at day-90 of pregnancy, since the hypophysis [Casida LE, Warwick J. The necessity of the corpus luteum for maintenance of pregnancy in the ewe. J Anim Sci 1945;4:34-9] or ovaries [Weems CW, Weems YS, Randel RD. Prostaglandins and reproduction in female farm animals. Vet J 2006;171:206-28] are not necessary after day-55 to maintain pregnancy. In Experiment 1, diced placental slices from day-90 intact or OVX pregnant ewes that were ovariectomized or laparotomized and ovaries were not removed on day 83 were collected on day-90 and incubated in vitro in M-199 with Vehicle, ovine luteinizing hormone (oLH), ovine follicle stimulating hormone (oFSH), ovine placental lactogen (oPL), PGE(l), PGE(2), PGD(2), PGI(2), insulin-like growth factor (IGF) 1 or 2 (IGF(l); IGF(2)), leukotriene C(4) (LTC(4)), platelet activating factor (PAF) 16 or 18 (PAF-16; PAF-18) at doses of 0, 1, 10, or 100ng/ml for 4h. In Experiment 2, placental slices from day-90 intact and OVX (intact or OVX laporotomized 7 days earlier) pregnant ewes were incubated in vitro with vehicle, INDO, Meclofenamate (MECLO), PGE(l), PGE(2), INDO+PGE(1), MECLO+PGE(l), INDO+PGE(2), or MECLO+PGE(2) for 4h. Media were analyzed for progesterone, estradiol-17beta, PGE, or PGF(2alpha) by RIA. Hormone data in media were analyzed in Experiment 1 by a 2x3x13 and in Experiment 2 by a 2x9 Factorial Design for ANOVA. In Experiment 1, placental progesterone, PGE, or estradiol-17beta secretion were increased (P< or =0.05) two-fold by OVX. Progesterone was not increased (P> or =0.05) by any treatment other than OVX and only FSH increased (P< or =0.05) estradiol-17beta secretion by placental slices in both OVX and intact ewes 90-day pregnant ewes. In Experiment 2, INDO or MECLO decreased (P< or =0.05) placental progesterone secretion by 88% but did not decrease (P> or =0.05) placental estradiol-17beta secretion from intact or OVX ewes. PGE(l) or PGE(2) increased (P< or =0.05) progesterone secretion only in ewes treated with INDO or MECLO. It is concluded that FSH probably regulates day-90 ovine placental estradiol-17beta secretion, while PGE(l) or PGE(2) regulates day-90 placental progesterone secretion.  相似文献   

2.
Two separate experiments were conducted to determine whether prostaglandin (PG) E2 stimulates the secretion of progesterone by 270- or 200-day Brahman placentas in vitro. Secretion of progesterone, PGF2alpha, pregnancy specific protein B, or estradiol-17beta by 270-day Brahman placentas was not affected (p > or = 0.05) by PGE2, during the 4-h incubation period at the doses tested. Indomethacin or meclofenamic acid decreased (p < or = 0.05) 270-day Brahman placental secretion of PGE and PGF2alpha by 98 and 60%, respectively. However, PGE2 induced (p < or = 0.05) its own secretion, but not the secretion of PGF2alpha (p > or = 0.05), by 270-day Brahman placentas, even in the presence of indomethacin or meclofenamic acid at a dose of 100 ng/mL. Also, secretion of 8-Epi-PGE2 by Day 270 Brahman placentas was increased (p < or = 0.05) by PGE2. Secretion of progesterone, estradiol-17beta, or pregnancy specific protein B by 200-day Brahman placentas was not affected by PGE2, 8-Epi-PGE2, PGF2alpha, estradiol-17beta, or trichosanthin during the 4- or 8-h incubation period (p > or = 0.05). Secretion of estradiol-17beta at 8 h was lower (p < or = 0.05) in all treatment groups and did not differ (p > or = 0.05) among the 8-h incubation treatment groups. Secretion of PGE by 200-day Brahman placentas was reduced (p < 0.05) by indomethacin 72 and 82% and by meclofenamic acid 72 and 96%, respectively, at 4 and 8 h when compared to controls. Secretion of PGF2alpha was reduced (p < or = 0.05) 71 and 86% by indomethacin or 89 and 89% by meclofenamic acid at 4 and 8 h, respectively, and did not differ (p > or = 0.05) between 4 and 8 h of incubation. PGE2 did not (p > or = 0.05) induce secretion of PGE above what was added in any treatment group. PGE in culture media was increased (p < or = 0.05) by 8-Epi-PGE2, pregnancy specific protein B, and the 100 ng/mL PGF2alpha dose (p < or = 0.05), but not by PGE2, progesterone, estradiol-17beta, 8-Epi-PGF2alpha, or trichosanthin. Secretion of PGF2alpha by 200-day Brahman placentas was not affected (p > or = 0.05) by 8-Epi-PGE2, progesterone, or estradiol-17beta, but PGF2alpha secretion was increased (p < or = 0.05) by trichosanthin or PGE2, even in the presence of indomethacin or meclofenamic acid. It is concluded that PGE does not affect secretion of progesterone by 200- or 270-day bovine placentas, but, pregnancy specific protein B may regulate placental secretion of PGE. Also, indomethacin and meclofenamic may affect enzymes converting PGH to PGE rather than acting only on cyclooxygenase because indomethacin and meclofenamic acid lowered PGE secretion by 270-day Brahman placentas more than they lowered PGF2alpha. In addition, it is concluded that PGE2 can induce bovine placental secretion of PGE, but this is dependent upon the stage of gestation.  相似文献   

3.
The luteotropic activity of ovine placental lactogen (oPL) on different days of gestation in ewes was assessed using in vitro methods. Corpora lutea (CL) harvested on Days 45, 70, 95, 120 and 135 of gestation and during parturition were enzymatically dispersed and plated on multiwell plates. After 48 h of incubation, all cultures were terminated and media were frozen for further steroid analysis. Cells were cultured in control medium, with addition of oPL alone, or in combination with PGE2 or PGF2alpha. Supplementation of culture media with oPL increased basal progesterone secretion by cells isolated on Days 45 and 70 of gestation. There was no effect on progesterone secretion by cells isolated on other days of gestation; PGE2 added to the culture media increased progesterone production only by cells isolated on Day 70 of pregnancy. Simultaneous oPL treatment with PGE2 had a statistically significant and stimulatory effect on progesterone production by luteal cells collected on Days 70 and 95 of pregnancy. In contrast, PGF2alpha alone in culture media decreased progesterone secretion by cells isolated on Days 45, 70 and 95 of gestation, while oPL plus PGF2alpha on Days 70 and 95 of gestation protected against luteolytic action of PGF2alpha. The results showed 1) a direct effect of the oPL on luteal cells isolated on Days 45 and 70 of gestation; 2) synergism between PL and PGE2 in progesterone production; by cells isolated on Day 70; 3) and a luteoprotective effect of oPL against the luteolytic action of prostaglandin F (PGF2alpha) observed on Days 70 and 95 of gestation.  相似文献   

4.
Ninety-day pregnant ewes were either laparotomized, ovaries left in situ or bilaterally ovariectomized, and a jugular venous catheter and an inferior vena cava catheter via the saphenous vein were installed. Seven days later, placenta slices were collected and incubated in vitro for 4 h. Secretions of progesterone, PGE, estradiol-17beta and pregnancy-specific protein B (PSPB) in vitro by placenta from ovariectomized ewes were increased (P < or = 0.05) by 2.7-, 3.6-, 2.2-, and 2.4-fold, respectively, when compared to placenta slices from intact 90-day pregnant ewes. Secretion of PGF2alpha in vitro was unchanged (P > or = 0.05). Ovariectomy decreased (P < or = 0.05) jugular venous progesterone for 78 h followed by a quadratic increase (P < or = 0.05), whereas progesterone remained unchanged (P > or = 0.05) in intact ewes over the 162-h sampling period. Ovariectomy increased (P < or = 0.05) PGE in inferior vena cava plasma over the last half of the 162-h sampling period, whereas concentration of PGF2alpha did not change (P > or = 0.05). Increases in PGE occurred before the increase in progesterone. Concentrations of PSPB in inferior vena cava plasma of ovariectomized pregnant ewes increased (P < or = 0.05) during the last half of the 162-h sampling period, but not in intact ewes (P > or = 0.05). PSPB increased before PGE and progesterone. Concentrations of estradiol-17beta in jugular venous plasma of ovariectomized pregnant ewes increased (P < or = 0.05) during the last half of the sampling period, but not in intact ewes (P > or = 0.05). Increases in estradiol-17beta occurred before increases in PSPB. It is concluded that these data support the hypothesis that estradiol-17beta may control placental secretion of PSPB; PSPB may regulate placental secretion of PGE; and PGE may regulate placental secretion of progesterone.  相似文献   

5.
The effect of amniotic fluid obtained from second trimester (16–20 wks) and term pregnancies (38–41 wks) on the production of PGE and F by human amnion, decidua and myometrium at term was determined using tissue slices incubated in vitro. Midpregnancy amniotic fluid neither inhibited nor stimulated the prostanoid production by any of the tissues. In contrast, term amniotic fluid obtained before as well as after the onset of labor markedly increased the production of both PGE and PGF in decidua and myometrium from levels in Krebs solution. The prostanoid production (PGE + PGF) in amnoin was not significantly increased but the proportion of PGF was raised during incubations in term amniotic fluid. In decidua and myometrium the increase in PGE and PGF production in term amniotic fluid was approximately 200 and 400 percent respectively, from control values in Krebs solution. We propose that the stimulatory activity in term amniotic fluid in responsible for the accelerated synthesis of prostaglandins after of membranes, which is reflected in raised PGF metabolite levels in maternal circulation. It may also be the reason for the rise in amniotic fluid prostaglandin levels around the 35th week of gestation, and perhaps for the onset of labor.  相似文献   

6.
When 4-day rabbit zygotes were incubated for 1 h at 37 degrees C in vitro, very little prostaglandin (PG) was released into the medium, and the concentration of PGs in the zygotes after incubation was also low. The release of prostaglandin E (PGE) and prostaglandin F (PGF) into the medium, and their concentration in the zygotes after incubation, increased sharply on Days 6 and 7 of pregnancy, reaching, by Day 7, values close to 200 ng of each PG released in 1 h per mg of protein. By contrast, endometrial samples on Days 4 and 5 of pregnancy released more PGF and less PGE than the zygotes of the same ages on a per mg of protein basis, and on Days 6 and 7, less of both PGs. Furthermore, endometrial concentrations of PGs after incubation, except for PGF on Day 4, were always lower than values for zygotes. Endometrial concentrations of PGs on Day 6 were lower before than after incubation. Although there was a slight upward trend in PG release by endometrial samples with increasing length of pregnancy, the changes were minimal and, in the case of PGE, none of the mean values exceeded 1 ng per mg of protein. In 7-day blastocysts, high levels of both PGF and PGE were found in the blastocoelic fluid, and these did not change during the 1-h incubation. The release of PGF and PGE during in vitro incubation of ruptured and washed Day 6 blastocysts was stimulated by arachidonic acid, and that of PGF, but not PGE, inhibited by indomethacin. The release of PGE, but not of PGF, from Day 6 blastocysts was inhibited by low temperature, and the same conditions inhibited release of both PGF and PGE from endometrial cell suspensions. It seems that both blastocysts and endometria have capability to synthesize PGs, the blastocysts being particularly active in this regard on Days 6 and 7 of pregnancy. It is hypothesized that, in vivo, Day 6 and 7 blastocysts release large quantities of PGs which trigger some of the local endometrial changes associated with pregnancy.  相似文献   

7.
8.
In 87 guinea-pigs the gestational changes were measured in the progesterone (P) and prostaglandin F (PGF) levels of the peripheral and uterine vein plasmas, ovaries, uterus, placenta, fetal membranes and amniotic fluid. In the ovaries, the peripheral and uterine vein plasma, placenta and uterus, P-concentrations increase during early pregnancy and after a plateau decrease significantly as term approaches. In contrast, the uterine-vein PGF-levels remain low throughout pregnancy and only increase near term. Thus, in the guinea-pig, as in the classic species of P-action, normal pregnancy is characterized by high P and low PGF levels and labor by low P and high PGF levels. Of special interest are the additional findings that in the guinea-pig the uterine tissue P-levels are only a fraction of the peripheral plasma levels and the placental PGF-levels far exceed those of the uterus and fetal membranes. To promote the biological interpretation of the endogenous changes in the regulatory profile of the pregnant guinea-pig, current studies examine the functional consequences of the experimentally induced changes in P and PGF-levels.  相似文献   

9.
The major objective of this experiment was to determine whether the bovine placenta could be stimulated to secrete progesterone, since the bovine placenta secretes little progesterone when the corpus luteum is functional. Secondly, we wanted to determine whether reported abortifacients or progesterone or estrogen receptor antagonists affected bovine placental prostaglandin secretion. The ovine placenta secretes half of the circulating progesterone at day 90 of pregnancy and PGE2 appears to regulate ovine placental progesterone secretion. Calcium has been reported to regulate placental progesterone secretion in cattle. Diced 186-245-day placental slice explants from six Brahman and six Angus cows were incubated in vitro at 39.5 degrees C under 95% air: 5% CO2 at pH 7.2 in 5 ml of M-199 for 1 h in the absence of treatments and for 4 and 8 h in the presence of treatments. Treatments were: vehicle; R24571; compound 48/80; IP3; PGE2; CaCl2; cyclosporin A; lipopolysaccharide (endotoxin) from Salmonella abortus equi., enteriditis, and typhimurium; monensin; ionomycin; arachidonic acid; mimosine; palmitic acid; progesterone, androstenedione; estradiol-17beta; A23187; RU-486; or MER-25. Jugular and uterine venous plasma and culture media were analyzed for progesterone, PGE2 and PGF2alpha by radioimmunoassay (RIA). Plasma hormone data were analyzed by a One-Way Analysis of Variance (ANOVA). Hormone data in culture media were analyzed for breed and treatment effects by a Factorial Design (2 breeds, 2-range of days, 21 treatments) for ANOVA (2 x 2 x 21). Since hormone data secreted by placental tissue in vitro did not differ (P > or = 0.05) by breed or range of days of pregnancy, data were pooled and analyzed by a One-Way ANOVA. Concentrations of PGE2 in uterine venous blood were two-fold greater (P < or = 0.05) in Angus than Brahman cows. PGE2 and PGF2alpha in vehicle controls increased from 4 to 8h (P < or = 0.05), but not progesterone (P > or = 0.05) Progesterone in culture media treated with RU-486 increased (P < or = 0.05) at 4 and 8 h compared to vehicle controls and was not affected by other treatments (P > or = 0.05). Concentrations of PGE2 in media at 4 and 8 h were lower (P < or = 0.05) when compared to controls except treatment with PGE2 at 4 and 8h and RU-486 at 8h (P > or = 0.05). PGF2alpha was increased (P < or = 0.05) by RU-486 at 8h and no other treatment affected PGF2alpha at 4 or 8 h (P < or = 0.05). In conclusion, modulators of cellular calcium signalling pathways given alone do not affect bovine placental progesterone secretion at the days studied and progesterone receptor-mediated events appear to suppress placental progesterone, PGF2alpha, and PGE2 secretion in cattle. In addition, PGE2 does not appear to regulate bovine placental progesterone secretion when the corpus luteum is functional and bacterial endotoxin does not appear to affect bovine placental secretion of PGF2alpha or PGE2.  相似文献   

10.
Prostaglandin (PG) E2 was the major PG released from the superfused guinea-pig uterus on Day 7, followed by in descending order 6-oxo-PGF1 alpha, thromboxane (TX) B2 and PGF2 alpha. However, the outputs of all four substances were low and were very similar. By Day 15, PGF2 alpha output from the superfused uterus had increased 21.9-fold, whereas the outputs of PGE2, 6-oxo-PGF1 alpha and TXB2 had increased only 1.8-, 2.9- and 1.2-fold, respectively. A mechanism is apparently "switched on" between Days 7 and 15 which causes a fairly specific increase in the release of PGF2 alpha from the uterus. Progesterone and/or estradiol had no effect on PG or TX release when superfused over the uterus on Day 7, nor did they have any effect on PG and TX release from the Day 15 uterus when administered separately. When administered together, however, they significantly inhibited PGF2 alpha, PGE2 and 6-oxo-PGF1 alpha, but not TXB2, release from the Day 15 uterus. Oxytocin had no effect on PG release from the Day 7 or Day 15 uterus, while A23187 stimulated PGF2 alpha, 6-oxo-PGF1 alpha and, to a lesser extent, PGE2 release from the uterus on both Days 7 and 15. Oxytocin is apparently not important for stimulating PGF2 alpha release from the guinea-pig uterus in relation to luteolysis, whereas increasing intracellular free Ca++ levels may be part of the mechanism for "switching on" uterine PG synthesis. Furthermore, changes in intracellular free Ca++ levels in the endometrium may be responsible for the pulsatile nature of PGF2 alpha release from the uterus.  相似文献   

11.
The outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)were similar from the day 22 guinea-pig placenta and sub-placenta in culture, except for PGE2 output from the sub-placenta which was lower. Between days 22 and 29 of pregnancy, the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)during the initial 2 h culture period increased 6.9-, 1.1- and 3.2-fold, respectively, from the placenta, and 2.1-, 1.4- and 2.2-fold, respectively, from the sub-placenta. Therefore, there was a relatively specific increase in PGF(2 alpha)production by the guinea-pig placenta between days 22 and 29 of pregnancy. The output of PGFM from the cultured placenta also increased between days 22 and 29, indicating that the increase in PGF(2 alpha)output was due to increased synthesis rather than to decreased metabolism. By comparing the amounts of prostaglandins produced by tissue homogenates during a 1 h incubation period, it appears that there is approximately a 2-fold increase in the amount of prostaglandin H synthase (PGHS) present in the guinea-pig placenta between days 22 and 29. NS-398 (a specific inhibitor of PGHS-2) and indomethacin (an inhibitor of both PGHS-1 and PGHS-2) both inhibited prostaglandin production by homogenates of day 22 and day 29 placenta. Indomethacin was more effective than NS-398, except for their actions on PGF(2 alpha)production by the day 29 placenta where indomethacin and NS-398 were equiactive. Indomethacin and NS-398 were both very effective at inhibiting the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)from the day 22 and day 29 placenta and sub-placenta in culture, indicating that prostaglandin production by the guinea-pig placenta and sub-placenta in culture is largely dependent upon the activity of PGHS-2. The high production of PGF(2 alpha)by the day 29 placenta is not dependent on the continual synthesis of fresh protein(s), as inhibitors of protein synthesis did not reduce PGF(2 alpha)output from the day 29 guinea-pig placenta in culture.  相似文献   

12.
The prostaglandin (PG) content of several tissues and fluids from 6 day pregnant rabbits was evaluated following treatment with indomethacin or vehicle . PGE and PGF were measured by radioimmunoassay. More complete depletion of PGE and PGF was accomplished by 3 injections of indomethacin (s.c.) given during the 18 h before sacrifice at a dose of 10 mg indomethacin per kg body weight than was accomplished by 1 injection of the same amount of indomethacin (i.v.) 1.5 h before sacrifice. Levels of PGF were more easily depressed by indomethacin than were those of PGE. PG levels in the kidney and blastocysts were depressed to a greater extent by indomethacin than were those in the uterus, uterine fluid or peritoneal fluid. Evaluation of the effect of indomethacin on a particular physiological function should be interpreted with caution unless the extent of PG depletion in that tissue is also measured.  相似文献   

13.
The prostaglandin (PG) content of several tissues and fluids from 6 day pregnant rabbits was evaluated following treatment with indomethacin or vehicle in vivo. PGE and PGF were measured by radioimmunoassay. More complete depletion of PGE and PGF was accomplished by 3 injections of indomethacin (s.c.) given during the 18 h before sacrifice at a dose of 10 mg indomethacin per kg body weight than was accomplished by 1 injection of the same amount of indomethacin (i.v.) 1.5 h before sacrifice. Levels of PGF were more easily depressed by indomethacin than were those of PGE. PG levels in the kidney and blastocysts were depressed to a greater extent by indomethacin than were those in the uterus, uterine fluid or peritoneal fluid. Evaluation of the effect of indomethacin on a particular physiological function should be interpreted with caution unless the extent of PG depletion in that tissue is also measured.  相似文献   

14.
Taponen J  Kindahl H 《Theriogenology》2005,63(6):1659-1666
Cloprostenol was previously believed to be unable to release endogenous prostaglandin F2alpha (PGF2alpha) when administered during early bovine diestrus. A prostaglandin release is, however, seen in late diestrus. The aim of this study is to find out whether dexcloprostoenol (containing the only biologically active isomer, d-isomer, of cloprostenol) induces endogenous PGF2alpha release during early and late diestrus. Twelve heifers of the Finnish Ayrshire breed were allocated into two equal groups. Their estrous cycles were synchronized with dexcloprostenol. A further luteolysis was induced with 0.15 mg of dexcloprostenol either on Day 7 (group D7 or early diestrus) or on Day 14 (group D14 or late diestrus) after ovulation. Blood for progesterone and the PGF2alpha metabolite 15-ketodihydro-PGF2alpha determinations was collected immediately before dexcloprostenol treatment and thereafter every second hour for 48 h. Five of the six heifers in both groups showed significantly increased blood levels of 15-ketodihydro-PGF2alpha at some time during the 48-h experimental period. The intervals from treatment to the first significant increases of the PGF2alpha metabolite were 32.8+/-2.3 h (min. 30 h, max. 36 h) and 20.0+/-4.2 h (min. 14 h, max. 24 h) in groups D7 and D14, respectively (P < 0.01). We have concluded that dexcloprostenol induced endogenous PGF2alpha release in most cases, regardless the time of its administration (early or late diestrus). This release, however, differs from that observed during spontaneous luteolysis.  相似文献   

15.
The ability of de novo biosynthesis of prostaglandins (PGs) in individual whole corpora lutea (CL) obtained from sterile-mated adult pseudopregnant rats on different days of the luteal phase and the post-luteolytic period was evaluated. Production of PGs, progesterone and 20 alpha-dihydroprogesterone were determined after in vitro incubation of CL extirpated from Day 2 to Day 19 after mating. A time-relationship with increased accumulation of PGs in the medium was demonstrated from 18 s to 5 h, with large increments during the first 30 min. Basal accumulation of PGs in the incubation medium was highest for 6-keto-PGF1 alpha (the stable metabolite of prostacyclin) greater than PGE2 greater than PGF2 alpha greater than thromboxane B2 (TXB2) and basal accumulation of PGF2 alpha and PGE2 measured in the medium was maximal on Day 10-11 of pseudopregnancy, concomitantly with a decline in secretion of progesterone. Addition of arachidonic acid (AA) dose-dependently increased synthesis of PGs, with absolute amounts of PGE2 greater than 6-keto-PGF1 alpha greater than PGF2 alpha greater than TXB2 and addition of 14 microM indomethacin markedly inhibited accumulation of all PGs measured. Luteinizing hormone (LH, 10 micrograms/ml) stimulated progesterone secretion on all days during pseudopregnancy, but not on the post-luteolytic Day 19. LH increased PGF2 alpha, PGE2 and 6-keto-PGF1 alpha secretion on Day 13 of pseudopregnancy by 76%, 91% and 28%, respectively, but not on the other days tested. Furthermore, stimulation of PG-synthesis by addition of AA abrogated the LH-induced progesterone accumulation markedly, but only on Day 13 of pseudopregnancy. Epinephrine (5 micrograms/ml) increased production of progesterone and also PGs, but only on Day 2 of pseudopregnancy, whereas oxytocin (100 mIU/ml) was found to be without effect on progesterone as well as PG secretion on all days tested. The results of the present study demonstrates the independent ability of the rat CL to synthesize PGG/PGH2-derived prostaglandins, including the putative luteolysin PGF2 alpha. Secondly, we demonstrate that LH and AA-induced increases in PGF2 alpha and PGE2 production during the luteolytic period, may be an autocrine or paracrine mechanism involved in luteolysis.  相似文献   

16.
This study examines differences in intracellular responses to cloprostenol, a prostaglandin (PG)F(2alpha) analog, in porcine corpora lutea (CL) before (Day 9 of estrous cycle) and after (Day 17 of pseudopregnancy) acquisition of luteolytic capacity. Pigs on Day 9 or Day 17 were treated with saline or 500 microgram cloprostenol, and CL were collected 10 h (experiment I) or 0.5 h (experiment III) after treatment. Some CL were cut into small pieces and cultured to measure progesterone and PGF(2alpha) secretion. In experiment I, progesterone remained high and PGF(2alpha) low in luteal incubations from either Day 9 or Day 17 saline-treated pigs. Cloprostenol increased PGF(2alpha) production 465% and decreased progesterone production 87% only from Day 17 luteal tissue. Cloprostenol induced prostaglandin G/H synthase (PGHS)-2 mRNA (0.5 h) and protein (10 h) in both groups. In cell culture, cloprostenol or phorbol 12, 13-didecanoate (PDD) (protein kinase C activator), induced PGHS-2 mRNA in luteal cells from both groups. However, acute cloprostenol treatment (10 min) decreased progesterone production and increased PGF(2alpha) production only from Day 17 luteal cells. Thus, PGF(2alpha) production is induced by cloprostenol in porcine CL with luteolytic capacity (Day 17) but not in CL without luteolytic capacity (Day 9). However, this change in PGF(2alpha) production is not explained by a difference in induction of PGHS-2 mRNA or protein.  相似文献   

17.
N L Poyser 《Prostaglandins》1987,33(1):101-112
Hydrocortisone (10 micrograms/ml) had no effect on the basal outputs and A23187-stimulated outputs of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha from the Day 15 guinea-pig uterus superfused in vitro. These findings indicate that the high output of PGF2 alpha from the guinea-pig uterus during the last one-third of the oestrous cycle is not modulated by the adrenal glucocorticoid hormones. Progesterone (10 micrograms/ml) had no effect on the A23187-induced increases in PG output from the Day 15 guinea-pig uterus. However, oestradiol (10 micrograms/ml but not 1 microgram/ml) significantly reduced the increases in outputs of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha induced by A23187 from the Day 15 guinea-pig uterus, without affecting basal PG outputs. The increase in uterine tone induced by A23187 in the Day 15 guinea-pig uterus was reduced by 20-50% by oestradiol (10 micrograms/ml). The addition of oestradiol (10 micrograms/ml) and progesterone together (10 micrograms/ml) produced the same effects on the Day 15 guinea-pig uterus as oestradiol alone. Oestradiol (10 micrograms/ml) also reduced the A23187-induced increases in PG output from the Day 7 guinea-pig uterus, but did not reduce the increase in uterine tone. Oestradiol (10 micrograms/ml) reduced the increases in outputs of PGF2 alpha, PGE2 and 6-keto-PGF1 alpha induced by exogenous arachidonic acid from the Day 7 and Day 15 guinea-pig uterus. Previous studies have shown that oestradiol is not a cyclo-oxygenase inhibitor. The present findings suggest that oestradiol, at a relatively high concentration, may interfere with the access of arachidonic acid to the cyclo-oxygenase enzyme. This action of oestradiol may explain its anti-luteolytic action when administered to guinea-pigs in large doses after Day 9 of the cycle.  相似文献   

18.
Three experiments were conducted, using multiparous crossbred beef cows, to test the ability of exogenous prostaglandin F(2alpha) (PGF) and/or naloxone to reduce the duration of the postpartum interval to estrus and to improve subsequent reproductive performance. In each experiment, postpartum cows were assigned to treatments by calving date. In Experiment 1, cows (n=44) were assigned to 1 of 4 treatment groups: 1) control, 2) PGF on Day 25 post partum, 3) 400 mg naloxone (3 doses) at 12-h intervals on Day 30 post partum, and 4) PGF on Day 25 followed by 3 400-mg doses naloxone at 12-h intervals on Day 30 post partum. In Experiment 2, cows (n=126) were assigned either to 1) control or 2) PGF on Day 30 post partum In Experiment 3, cows (n=67) were again assigned to 1 of 4 treatments 1) control, 2) PGF on Day 30 post partum, 3) PGF on Day 40 post partum, and 4) PGF on Day 30 and 40 post partum. Serum progesterone was used to determine the postpartum interval to estrus in Experiments 1 and 3. In all 3 experiments, serum progesterone was used to determine the proportion of cows that had reestablished estrous cycles at the start of breeding. Pregnancy rate and calving interval were analyzed for all trials. Naloxone had no effect (P > 0.20) on any reproductive variable measured. The postpartum interval to estrus was similar (P > 0.30) for PGF-treated and control cows in Experiments 1 and 3. The proportion of cows cycling at the start of breeding and the calving interval were not affected (P > 0.20) by PGF treatment in any of the experiments. Only the administration of PGF on Day 40 post partum in Experiment 3 improved (P=0.04) the subsequent pregnancy rate. Analysis of data pooled across experiments showed that the pregnancy rate was higher (P=0.03) for cows treated with PGF than for control cows (91.4 and 72.9%, respectively). It was concluded that administration of PGF during the early postpartum period improves subsequent reproductive function in beef cows.  相似文献   

19.
The microsomes of placenta and uterus from pregnant rabbits have been found to catalyze the omega-hydroxylation of PGE1, PGE2, PGF2 alpha, and PGA1 as well as the omega- and (omega-1)-hydroxylation of palmitate and myristate in the presence of NADPH. These activities were greatly inhibited by carbon monoxide, indicating the involvement of cytochrome P-450. The apparent Km for PGE1 was 2.38 microM and 2.1 microM with the placental and uterus microsomes, respectively. Cytochrome P-450 has been solubilized with 1% cholate from the placental microsomes, and partially purified by chromatography on 6-amino-n-hexyl Sepharose 4B, DEAE-Sephadex A-50 and hydroxylapatite columns. The partially purified cytochrome P-450 efficiently catalyzed the omega-hydroxylation of various prostaglandins such as PGE1, PGE2, PGF2 alpha, PGD2, and PGA1 in a reconstituted system containing NADPH-cytochrome P-450 reductase, cytochrome b5, and phosphatidylcholine. The reconstituted system also hydroxylated palmitate and myristate at the omega- and (omega-1)-position, but could not hydroxylate laurate. These catalytic properties resemble those of a new form of cytochrome P-450 highly purified from the lung microsomes of progesterone-treated rabbits (Yamamoto, S., Kusunose, E., Ogita, K., Kaku, M., Ichihara, K., and Kusunose, M. (1984) J. Biochem. 96, 593-603). This type of cytochrome P-450, viz., cytochrome P-450 with high prostaglandin omega-hydroxylase activity may play a role in the regulation of prostaglandin levels in pregnancy.  相似文献   

20.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P > or = 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P < or = 0.05) by LH or PGE2. Secretion of progesterone in vitro by CL slices from day-90 pregnant ewes was not affected by LH (P > or = 0.05) while PGE2 increased (P < or = 0.05) secretion of progesterone. Day 8 ovine CL of the estrous cycle did not secrete (P > or = 0.05) detectable quantities of PGF2alpha or PGE while day-90 ovine CL of pregnancy secreted PGE (P < or = 0.05) but not PGF2alpha. Secretion of progesterone and PGE in vitro by day-90 CL of pregnancy was decreased (P < or = 0.05) by indomethacin. The addition of PGE2, but not LH, in combination with indomethacin overcame the decreases in progesterone by indomethacin (P < or = 0.05). In experiment 2, secretion of progesterone in vitro by day-11 CL of the estrous cycle was increased at 4-h (P < or = 0.05) in the absence of treatments. Both day-11 CL of the estrous cycle and day-90 CL of pregnancy secreted detectable quantities of PGE and PGF2alpha (P < or = 0.05). In experiment 1, PGF2alpha secretion by day-8 CL of the estrous cycle and day-90 ovine CL of pregnancy was undetectable, but was detectable in experiment 2 by day-90 CL. Day 90 ovine CL of pregnancy also secreted more PGE than day-11 CL of the estrous cycle (P < or = 0.05), whereas day-8 CL of the estrous cycle did not secrete detectable quantities of PGE (P > or = 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF2alpha by day- 11 CL of the estrous cycle or day-90 CL of pregnancy (P > or = 0.05). It is concluded that PGE2, not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF2alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号