首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yasusi Yamamoto  Bacon Ke 《BBA》1981,636(2):175-184
Surface charge density of subchloroplast fragments fractionated from spinach by Triton X-100 treatment was estimated from cation-induced quenching of chlorophyll fluorescence, with the premise that the fluorescence yield is dependent on the surface electric potential of the preparations. Application of the Gouy-Chapman theory of diffuse double layer to the subchloroplast preparations, or treating the surface of the preparations under electric charge regulation conditions yielded a result suggesting the Photosystem II reaction-center preparation (TSF-IIa) to be more negatively charged than the Photosystem I reaction-center preparation (TSF-I). Isoelectric points of the subchloroplast fragments were determined by measuring 90° light scattering and more directly by gel isoelectric focusing. Isoelectric points of TSF-I and -IIa were estimated to be 4.8 and 4.0 from light-scattering experiments, and 4.5 and 4.1 from gel electrophoresis, respectively. The TSF-II preparation that contains both a light-harvesting complex and the reaction-center (core) complex showed a small cation-induced quenching of chlorophyll fluorescence. This fluorescence quenching may be ascribed mostly to the regulation of energy transfer in the preparation (Yamamoto, Y. and Ke, B. (1980) Biochim. Biophys. Acta 592, 296–302). Furthermore, the TSF-II preparation showed a broad and indefinite peak in light scattering in the pH range 3–8, suggesting that the complex probably carries a small amount of charge in this pH range. The physiological role of the membrane surface charge of the subchloroplast preparations in membrane structure and cation regulated processes in chloroplast is discussed.  相似文献   

2.
A rather simple method of isolation of photosystem 2 fragments, which are highly purified from Photosystem 1 admixture, has been developed on the basis of combined action of detergents and differential centrifugation. The isolated fragments are characterized by insignificant content of P700 (one molecule per 10500 molecules of chlorophyll) and by high ratio of band values at 685 and 735 nm in the low temperature emission spectrum of fluorescence (F685/F735=5.9). The data on photochemical activity and ability for photoinduced changes in fluorescence prove that the activity of Photosystem 2 is retained both at the level of reaction centre operation and at that of water photooxidation with oxygen evolution.  相似文献   

3.
4.
5.
6.
7.
Covalent coupling of bovine rhodopsin to CPG-thiol glass was used for separation of CNBr peptides. It is shown that cysteine residues 322 and 323 in the C-terminal cytoplasmic fragment of rhodopsin are modified with palmitic acid.  相似文献   

8.
The kinetics of 32Pi incorporation into adenine nucleotides by subchloroplast particles in the light is studied with a continuous flow apparatus allowing measurements between 3 and 200 ms. After a short lag time from 1 to 3 ms ATP synthesis proceeds with a constant rate. During the first few milliseconds a faster labelling of ADP is detected. This labelling of ADP reaches a constant level up to 1 molecule ADP labelled per molecule of coupling factor present. The labelling pattern in ATP indicates that the labelled ADP does not equilibrate with free ADP. The addition of 32Pi to a phosphorylating system during the light phase (32Pi pulse) exhibits unchanged kinetic characteristics for labelling of ATP and ADP. These results indicate a phosphorylation of AMP to ADP being an intermediate step in photophosphorylation. In experiments carried out in the dark no label is found in ATP within the time analysed. However the labelling of ADP occurs in the same way as in the light.  相似文献   

9.
Two procedures were used to isolate hepatocytic Golgi fractions from rat liver. One procedure yields a light Golgi fraction (GF1 + 2) and the other "intact" stacks of cisternae. Triglyceride fatty acids in nascent very low density lipoproteins (VLDL) were labeled by injection of [3H]palmitate intravenously, and radiolabeled lipoproteins were injected as markers of potentially contaminating endosomes. GF1 + 2 fractions were enriched manyfold in the endosomal markers, indicative of substantial endosomal contamination, whereas intact Golgi fractions from the same livers were about 7% as contaminated. By electron microscopy, GF1 + 2 fractions contained mainly multivesicular bodies (MVBs), together with some Golgi-derived secretory vesicles. The small endosomal contamination of intact Golgi fractions was further reduced by a simple modification of the procedure, which removed most entrained endosomes. The surface constituents of Golgi VLDL (d less than 1.010 g/ml) released from these highly purified intact Golgi fractions differed from those of plasma VLDL. Golgi VLDL contained fivefold less unesterified cholesterol than plasma VLDL, but twofold more phospholipids. Golgi VLDL and plasma VLDL contained similar amounts of cholesteryl esters and triglycerides. The protein content of Golgi VLDL was substantially lower than that of plasma VLDL. ApoB-100 and apoB-48 were similarly represented, but nascent VLDL contained less of the C apolipoproteins. ApoA-I was present mainly as the proprotein in Golgi VLDL, but was virtually lacking in plasma VLDL. ApoE comprised about 22% of the protein mass of Golgi VLDL as well as plasma VLDL; the distribution of apoE isoforms was also similar. Apolipoproteins E and pro A-I released from ruptured Golgi cisternae were largely bound to the Golgi VLDL or were associated with Golgi membranes. Particles resembling low density lipoproteins (LDL) and high density lipoproteins (HDL) were not seen by electron microscopy in contents of intact Golgi fractions. These observations indicate that nascent Golgi VLDL are the primary particulate precursors of rat plasma lipoproteins of hepatocytic origin, and suggest that particles with the density of plasma HDL and LDL do not exist within the secretory pathway of normal hepatocytes. Thus, the results of this research on the properties of nascent plasma lipoprotein precursors contained within uncontaminated hepatocytic Golgi fractions differ substantially from previous published work.  相似文献   

10.
The properties of two purified alamethicin fractions, Fraction 4 and Fraction 6, have been studied in phosphatidylethanolamine (PE) membranes and phosphatidylserine (PS) membranes. Membranes doped with Fraction 4 show well-defined single channel conductance (mean lifetime about 20 ms). The autocorrelation function of the current fluctuations has one relaxation time of the same order as the mean lifetime of the single channels, and the current response to a voltage pulse follows an exponential with only one time constant. The conductance of a membrane doped with Fraction 6 has a voltage-independent part and a current-voltage curve with a slope that is half the slope of the Fraction 4 current-voltage curve. In the presence of Fraction 6, PS membranes and PE membranes both have symmetrical current-voltage curves even with Fraction 6 added to only one side. We did not detect any well-defined single channel levels in the presence of Fraction 6, and autocorrelation analysis of the current due to Fraction 6 gave two characteristic correlation times: a fast time (about 5 ms) and a slow time (about 50 ms). High current level kinetics of Fraction 6 also show two time constants. A possible explanation for the differences between the two fractions is that Fraction 6 monomers have a lower dipole moment than those of Fraction 4. The difference in channel stability can be explained by a lowered tendency of the monomers to line up parallel to the field. The negative branch and voltage-independent conductance can be explained by lowered energy of insertion of monomers into the membrane, and lowered energy of interaction between the monomers and the electric field.  相似文献   

11.
Summary Plasma membranes purified from spinach leaves by aqueous two-phase partitioning were examined by atomic-force microscopy (AFM) in phosphate buffer, and details on their structure were reported at nanometric scale. Examination of the fresh membrane preparation deposited on mica revealed a complex organization of the surface. It appeared composed of a first layer of material, about 8 nm in thickness, that practically covered all the mica surface and on which stand structures highly heterogeneous in shape and size. High-resolution imaging showed that the surface of the first layer appeared relatively smooth in some regions, whereas different characteristic features were observed in other regions. They consisted of globular-to-elliptical protruding particles of various sizes, from 4–5 nm x-y size for the smallest to 40–70 nm for the largest, and of channel-like structures 25–30 nm in diameter with a central hole. Macromolecular assemblies of protruding particles of various shapes were imaged. Addition of the proteolytic enzyme pronase led to a net roughness decrease in regions covered with particles, indicating their proteinaceous nature. The results open fascinating perspectives in the investigation of membrane surfaces in plant cells with the possibility to get structural information at the nanometric range.Abbreviations AFM atomic-force microscopy - EM electron microscopy - TMAFM tapping-mode atomic-force microscopy  相似文献   

12.
The hydrogenase from Azotobacter vinelandii is typically purified under anaerobic conditions. In this work, the hydrogenase was purified aerobically. The yields were low (about 2%) relative to those of the anaerobic purification (about 20%). The rate of enzyme activity depended upon the history of the enzyme. The enzyme preparations were active as isolated in H2 oxidation, and isotope exchange. The activity increased during the assay to a new maximal level (turnover activation). Treatment with reductants (e.g., H2, dithionite, dithiothreitol, indigo carmine) resulted in greater activation (reductant activation). Activation of the hydrogenase was accompanied by decrease in visible light absorption (300-600 nm) with maximal decreases at 450 and 345 nm which indicated the reduction of iron-sulfur clusters. The aerobically purified hydrogenase was susceptible to irreversible inactivation by cyanide. Pretreatment with acetylene did not influence activation of the hydrogenase. Once activated, the aerobically purified hydrogenase was indistinguishable from the anaerobically purified hydrogenase with respect to the catalytic properties tested.  相似文献   

13.
Kimiyuki Satoh 《BBA》1979,546(1):84-92
The Photosystem II pigment-protein complex, the chlorophyll α-protein comprising the reaction center of Photosystem II, was prepared from EDTA-treated spinach chloroplasts by digitonin extraction, sucrose-gradient centrifugation, DEAE-cellulose column chromatography, and isoelectrofocussing on Ampholine.The dissociated pigment-protein complex exhibits two polypeptide subunits that migrate in SDS-polyacrylamide gel with electrophoretic mobilities corresponding to molecular weights of approximately 43 000 and 27 000. The chlorophyll was always found in the free pigment zone at the completion of the electrophoresis. Heat-treatment of the sample (100°C, 90 s) for electrophoresis caused association of the two polypeptides into large aggregates. It is concluded that these two polypeptides, 43 000 and 27 000, are valid structural or functional components of Photosystem II pigment-protein complex.  相似文献   

14.
15.
The glucan specifity of the purified chloroplast and non-chloroplast forms of -1,4-glucan phosphorylase (EC 2.4.1.1) from spinach leaves (Steup and E. Latzko (1979), Planta 145, 69–75) was investigated. Phosphorolysis by the two enzymes was studied using a series of linear maltodextrins (degree of polymerization 11), amylose, amylopectin, starch, and glycogen as substrates. For all unbranched glucans (amylose and maltodextrins G5–G11), the chloroplast phosphorylase had a 7–10-fold higher apparent affinity (determined by initial velocity measurements) than the non-chloroplast phosphorylase form. For both enzyme forms, the minimum chain length required for a significant rate of phosphorolysis was five glucose units. Likewise, phosphorolysis ceased when the maltodextrin was converted to maltotetraose. With the chloroplast phosphorylase, maltotetraose was a linear competitive inhibitor with respect to amylose or starch (K i-0.1 mmol 1-1); the inhibition by maltotetraose was less pronounced with the non-chloroplast enzyme. In contrast to unbranched glucans, the non-chloroplast phosphorylase exhibited a 40-, 50-, and 300-fold higher apparent affinity for amylopectin, starch, and glycogen, respectively, than the chloroplast enzyme. With respect to these kinetic properties the chloroplast phosphorylase resembled the type of maltodextrin phosphorylase.Abbreviations G1P Glucose 1-phosphate - MES 2(N-morpholino)ethane sulphonic acid - Pi orthophosphate - Tris Tris(hydroxymethyl)aminomethane  相似文献   

16.
17.
18.
19.
Three thylakoid complexes were isolated by deoxycholate preparative electrophoresis. The protein composition of each fraction was analyzed by SDS analytical electrophoresis. No protein of the PS 1 enriched fraction (fraction 1) was found in the PS 2 enriched fraction (fraction 2) and inversely. The antenna complex (fraction 3) did not have any contamination by proteins of fraction 1 or fraction 2. Fraction 1 was mainly composed of the CP1, the reaction center complex of the PS1, and by low molecular weight proteins, previously found in other PS 1 preparations. Tentative assignments of these proteins are presented; among them are iron sulfur proteins. After analytical SDS electrophoresis of fraction 2, the reaction center complex was dissociated. Nevertheless three proteins of 50 kD, 42 kD and 35 kD were assigned to this complex. Fraction 2 contained also the three cytochromes of the thylakoid membranes: cyt f, cyt b6, cyt b559. Fraction 3 was exclusively composed of one protein pigment complex, CP2.Abbreviations SDS sodium dodecyl sulfate - PS 1 photosystem 1 - PS 2 photosystem 2 - CP1, CP2 protein pigment complexes isolated by SDS electrophoresis - cyt cytochromes - P700 primary electron donor of PS 1 - P680 primary electron donor of PS 2 - DOC deoxycholate - Q primary plastoquinone electron acceptor - CF coupling factor  相似文献   

20.
The Photosystem II pigment-protein complex, the chlorophyll alpha-protein comprising the reaction center of Photosystem II, was prepared from EDTA-treated spinach chloroplasts by digitonin extraction, sucrose-gradient centrifugation, DEAE-cellulose column chromatography, and isoelectrofocussing on Ampholine. The dissociated pigment-protein complex exhibits two polypeptide subunits that migrate in SDS-polyacrylamide gel with electrophoretic mobilities corresponding to molecular weights of approximately 43,000 and 27,000. the chlorophyll was always found in the free pigment zone at the completion of the electrophoresis. Heat-treatment of the sample (100 degrees C, 90 s) for electrophoresis caused association of the two polypeptides into large aggregates. It is concluded that these two polypeptides, 43,000 and 27,000, are valid structural or functional components of Photosystem II pigment-protein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号