首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylmalonyl CoA mutase (MCM) catalyzes an essential step in the degradation of several branch-chain amino acids and odd-chain fatty acids. Deficiency of this apoenzyme causes the mut form of methylmalonic acidemia, an often fatal disorder of organic acid metabolism. An MCM cDNA has recently been obtained from human liver cDNA libraries. This clone has been used as a probe to determine the chromosomal location of the MCM gene and MUT locus. Southern blot analysis of DNA from human-hamster somatic-cell hybrid cell lines assigned the locus to region q12-p23 of chromosome 6. In situ hybridization further localized the locus to the region 6p12-21.2. A highly informative RFLP was identified at the MCM gene locus which will be useful for genetic diagnostic and linkage studies.  相似文献   

2.
The human methylmalonyl CoA mutase (MCM) cDNA has been used to localize the MUT locus on the short arm of chromosome 6 proximal to the glyoxalase locus in 6p deletion cell lines. A HindIII polymorphism identified by the MCM cDNA was used to study linkage relationships of MUT to HLA (A-B-DQ-DR) and D6S4 in the reference CEPH families. The maximum lod score for MUT versus HLA was 3.04 at a recombination fraction of 0.28. The maximum lod score for MUT versus D6S4 was 22.93 at a recombination fraction of 0.01. These data suggest that MUT and D6S4 loci are tightly linked and may be used as one locus in a haplotype form for linkage studies on proximal 6p and diagnostic analysis of pedigrees with mut methylmalonic acidemia.  相似文献   

3.
Genetic defects in the enzyme methylmalonyl CoA mutase cause a disorder of organic acid metabolism termed "mut methylmalonic acidemia." Various phenotypes of mut methylmalonic acidemia are distinguished by the presence (mut-) or absence (mut0) of residual enzyme activity. The recent cloning and sequencing of a cDNA for human methylmalonyl CoA mutase enables molecular characterization of mutations underlying mut phenotypes. We identified compound heterozygous mutations in a mut0 fibroblast cell (MAS) line by cloning the methylmalonyl CoA mutase cDNA by using the polymerase chain reaction (PCR), sequencing with internal primers, and confirming the pathogenicity of observed mutations by DNA-mediated gene transfer. Both mutations alter amino acids common to the normal human, mouse, and Propionibacterium shermanii enzymes. This analysis points to evolutionarily preserved determinants critical for enzyme structure or function. The application and limitation of cDNA cloning by PCR for the identification of mutations are discussed.  相似文献   

4.
5.
Methylmalonic aciduria is a human autosomal recessive disorder of organic acid metabolism resulting from a functional defect in the activity of the enzyme methylmalonyl-CoA mutase. Based upon the homology of the human mutase locus with the mouse locus, we have chosen to disrupt the mouse mutase locus within the critical CoA binding domain using gene-targeting techniques to create a mouse model of methylmalonic aciduria. The phenotype of homozygous knock-out mice (mut-/-) is one of early neonatal lethality. Mice appear phenotypically normal at birth and are indistinguishable from littermates. By 15 h of age, they develop reduced movement and suckle less. This is followed by the development of abnormal breathing, and all of the mice with a null phenotype die by 24 h of age. Urinary levels of methylmalonic and methylcitric acids are grossly increased. Measurement of acylcarnitines in blood shows elevation of propionylcarnitine with no change in the levels of acetylcarnitine and free carnitine. Incorporation of [14C]propionate in primary fibroblast cultures from mut-/- mice is reduced to approximately 6% of normal level, whereas there is no detectable synthesis of mut mRNA in the liver. This is the first mouse model that recapitulates the key phenotypic features of mut0 methylmalonic aciduria.  相似文献   

6.
7.
DNA replication in mammalian cells is a precisely controlled physical and temporal process, likely involving cis-acting elements that control the region(s) from which replication initiates. In B cells, previous studies showed replication timing to be early throughout the immunoglobulin heavy chain (Igh) locus. The implication from replication timing studies in the B-cell line MPC11 was that early replication of the Igh locus was regulated by sequences downstream of the C alpha gene. A potential candidate for these replication control sequences was the 3' regulatory region of the Igh locus. Our results demonstrate, however, that the Igh locus maintains early replication in a B-cell line in which the 3' regulatory region has been deleted from one allele, thus indicating that replication timing of the locus is independent of this region. In non-B cells (murine erythroleukemia cells [MEL]), previous studies of segments within the mouse Igh locus demonstrated that DNA replication likely initiated downstream of the Igh gene cluster. Here we use recently cloned DNA to demonstrate that segments located sequentially downstream of the Igh 3' regulatory region continue to replicate progressively earlier in S phase in MEL. Furthermore, analysis by two-dimensional gel electrophoresis indicates that replication forks proceed exclusively in the 3'-to-5' direction through the region 3' of the Igh locus. Extrapolation from these data predicts that initiation of DNA replication occurs in MEL at one or more sites within a 90-kb interval located between 40 and 130 kb downstream of the 3' regulatory region.  相似文献   

8.
9.
Structural analysis of a phage lambda Charon 4A clone carrying one of the human nuclear mitochondrial(mut)-DNA-like sequences revealed that a KpnI-family member (KpnI 5.5-kb DNA) is inserted within this sequence. The inserted KpnI 5.5-kb DNA contains several possible polyadenylation signal sequences followed by an A-rich sequence at its 3' end and is flanked by perfect 13-bp direct repeats of the duplicated mtDNA-like sequences. These structures strongly suggest that the KpnI 5.5-kb DNA is a mobile element. Comparison of the 5' terminal sequences of the KpnI 5.5-kb DNA and four other long KpnI-family DNAs so far examined, using the predicted general promoter sequence for eukaryotic tRNAs, indicates that they contain the consensus sequences for the split internal RNA polymerase III control region.  相似文献   

10.
VDJ rearrangement in the mouse immunoglobulin heavy chain (Igh) locus involves a combination of events, including a large change in its nuclear compartmentalization. Prior to rearrangement, Igh moves from its default peripheral location near the nuclear envelope to an interior compartment, and after rearrangement it returns to the periphery. To identify any sites in Igh responsible for its association with the periphery, we systematically analyzed the nuclear positions of the Igh locus in mouse non-B- and B-cell lines and, importantly, in primary splenic lipopolysaccharide-stimulated B cells and plasmablasts. We found that a broad approximately 1-Mb region in the 5' half of the variable-gene region heavy-chain (Vh) locus regularly colocalizes with the nuclear lamina. The 3' half of the Vh gene region is less frequently colocalized with the periphery, while sequences flanking the Vh gene region are infrequently so. Importantly, in plasmacytomas, VDJ rearrangements that delete most of the Vh locus, including part of the 5' half of the Vh gene region, result in loss of peripheral compartmentalization, while deletion of only the proximal half of the Vh gene region does not. In addition, when Igh-Myc translocations move the Vh genes to a new chromosome, the distal Vh gene region is still associated with the nuclear periphery. Thus, the Igh region that interacts with the nuclear periphery is localized but is likely comprised of multiple sites that are distributed over approximately 1 Mb in the 5' half of the Vh gene region. This 5' Vh gene region that produces peripheral compartmentalization is the same region that is distinguished by requirements for interleukin-7, Pax5, and Ezh2 for rearrangement of the Vh genes.  相似文献   

11.
The Notch locus of Drosophila melanogaster   总被引:48,自引:0,他引:48  
S Kidd  T J Lockett  M W Young 《Cell》1983,34(2):421-433
  相似文献   

12.
Molecular genetic analysis of a number of vertebrate erythroid cell-specific genes has identified at least two types of cis-acting regulatory sequences which control the complex developmental pattern of gene expression during erythroid cell maturation. Tissue-specific cellular enhancers have been identified 3' to three erythroid cell-specific genes, and additional regulatory elements have been identified in the promoters of many erythroid genes. We show that the histone H5 enhancer, like the adult beta-globin enhancer, is involved in mediating the developmental induction of histone H5 mRNA as erythroid cells mature. We also describe the preliminary characterization of a tissue-specific regulatory element within the 5' region of the H5 locus and describe investigations of the interaction between this element and the histone H5 enhancer in mediating histone H5 regulation.  相似文献   

13.
14.
The nucleotide sequence of the src gene and flanking regions of the Schmidt-Ruppin strain of Rous sarcoma virus (SR-A) was determined. The src region of SR-A was very homologous to that of recovered avian sarcoma virus (rASV1441), with only 17 differences among 1,578 nucleotides. The size of the predicted protein was 526 amino acids in both viruses, of which 6 amino acids were different. The differences in nucleotides and amino acids between the two viruses localized within the 5' two-thirds of the src coding region. There were also viruses localized within the 5' two-thirds of the src coding region. There were also some differences in the region flanking the 5' end of src. Since rASVs are considered to be recombinatns between deletion mutants of SR-A and cellular-src (c-src) sequences, several segments of c-src DNA were also sequenced to understand the molecular basis for the recombination. At 14 of 17 bases where SR-A and rASV1441 differed, rASV1441 had the same sequence as c-src. Three of these sequences corresponded to sequences of oligonucleotides which were previously identified in RNAs of nearly all isolates of rASV but which were absent in SR-A RNA. In the 5'-flanking sequences of the src gene, c-src was more similar to rASV1441 than to SR-A. These results confirm the cellular origin of the src sequences of rASVs and provide information about the possible sites of the recombination.  相似文献   

15.
The ruminant pathogen Mycoplasma agalactiae possesses a family of abundantly expressed variable surface lipoproteins called Vpmas. Phenotypic switches between Vpma members have previously been correlated with DNA rearrangements within a locus of vpma genes and are proposed to play an important role in disease pathogenesis. In this study, six vpma genes were characterized in the M. agalactiae type strain PG2. All vpma genes clustered within an 8-kb region and shared highly conserved 5' untranslated regions, lipoprotein signal sequences, and short N-terminal sequences. Analyses of the vpma loci from consecutive clonal isolates showed that vpma DNA rearrangements were site specific and that cleavage and strand exchange occurred within a minimal region of 21 bp located within the 5' untranslated region of all vpma genes. This process controlled expression of vpma genes by effectively linking the open reading frame (ORF) of a silent gene to a unique active promoter sequence within the locus. An ORF (xer1) immediately adjacent to one end of the vpma locus did not undergo rearrangement and had significant homology to a distinct subset of genes belonging to the lambda integrase family of site-specific xer recombinases. It is proposed that xer1 codes for a site-specific recombinase that is not involved in chromosome dimer resolution but rather is responsible for the observed vpma-specific recombination in M. agalactiae.  相似文献   

16.
17.
The genomic structure of a human glycophorin variant, Miltenberger class V-like molecule (MiV*), was examined. Southern blot analysis of total genomic DNA revealed that the 5' half of the MiV* gene derived from glycophorin A (GPA) gene whereas the 3' half derived from glycophorin B (GPB) gene. This structure is reciprocal to another glycophorin variant, Sta, which has a GPB-GPA hybrid structure. The genomic sequences around the crossing-over point were amplified by polymerase chain reaction, and the sequences were determined. Comparison of the nucleotide sequences of the GPA, GPB, and MiV* genes indicates that the crossing-over point is located in the region around the 3' end of intron 3 of the GPA gene. This place is different from the crossing-over point for Sta, which was found to be highly homologous to that for haptoglobin-related genes. However, the nucleotide sequences within the presumptive crossing-over point for the MiV* gene were found to be homologous in a reverse orientation to the crossing-over point proposed for haptoglobin-related genes. These results suggest strongly that homologous recombination through unequal crossing over can be facilitated by specific genomic elements such as those in common for formation of MiV*, Sta, and haptoglobin-related genes. The present study also localized the gene of the third glycophorin, GPE, at chromosome 4, q31.1 band, the same locus as for the GPA and GPB genes. The results indicate that GPE was not involved in generating MiV* or Sta hybrid gene despite the fact that it is localized adjacent to the GPA and GPB genes.  相似文献   

18.
In humans, methylmalonyl acidemia is caused by a deficiency of L-methylmalonyl-CoA mutase (MUT) controlled by a gene that has been mapped to chromosome 6. The mouse homolog of this gene has now been mapped to mouse chromosome 17. Recombinant inbred and congenic strains place the mouse Mut locus 1.06 cM distal to H-2, between Pgk-2 and Ce-2. The relative order of syntenic probes flanking H-2 on mouse chromosome 17 and HLA on human chromosome 6 is shown to be different.  相似文献   

19.
Comparison analysis of the sequences of the mouse and human genomes has proven a powerful approach in identifying functional regulatory elements within the non-coding regions that are conserved through evolution between homologous mammalian loci. Here, we applied computational analysis to identify regions of homology in the 5' upstream sequences of the human tyrosinase gene, similar to the locus control region (LCR) of the mouse tyrosinase gene, located at -15 kb. We detected several stretches of homology within the first 30 kb 5' tyrosinase gene upstream sequences of both species that include the proximal promoter sequences, the genomic region surrounding the mouse LCR, and further upstream segments. We cloned and sequenced a 5' upstream regulatory sequence found between -8 and -10 kb of the human tyrosinase locus (termed h5'URS) homologous to the mouse LCR sequences, and confirmed the presence of putative binding sites at -9 kb, homologous to those described in the mouse tyrosinase LCR core. Finally, we functionally validated the presence of a tissue-specific enhancer in the h5'URS by transient transfection analysis in human and mouse cells, as compared with homologous DNA sequences from the mouse tyrosinase locus. Future experiments in cells and transgenic animals will help us to understand the in vivo relevance of this newly described h5'URS sequence as a potentially important regulatory element for the correct expression of the human tyrosinase gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号