共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kubota T Tokuno K Nakagawa J Kitamura Y Ogawa H Suzuki Y Suzuki K Oka K 《Biochemical and biophysical research communications》2003,303(1):332-336
Mg(2+) buffering mechanisms in PC12 cells were demonstrated with particular focus on the role of the Na(+)/Mg(2+) transporter by using a newly developed Mg(2+) indicator, KMG-20, and also a Na(+) indicator, Sodium Green. Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), a protonophore, induced a transient increase in the intracellular Mg(2+) concentration ([Mg(2+)](i)). The rate of decrease of [Mg(2+)](i) was slower in a Na(+)-free extracellular medium, suggesting the coupling of Na(+) influx and Mg(2+) efflux. Na(+) influxes were different for normal and imipramine- (a putative inhibitor of the Na(+)/Mg(2+) transporter) containing solutions. FCCP induced a rapid increase in [Na(+)](i) in the normal solution, while the increase was gradual in the imipramine-containing solution. The rate of decrease of [Mg(2+)](i) in the imipramine-containing solution was also slower than that in the normal solution. From these results, we show that the main buffering mechanism for excess Mg(2+) depends on the Na(+)/Mg(2+) transporter in PC12 cells. 相似文献
3.
4.
In some plant species, including Arabidopsis, fertilization induces the epidermal cells of the outer ovule integument to differentiate into a specialized seed coat cell type with a unique morphology and containing large quantities of polysaccharide mucilage (pectin). Such seed coat mucilage cells are necessary for neither viability nor germination under normal laboratory conditions. Thus, the Arabidopsis seed coat offers a unique system with which to use genetics to identify genes controlling cell morphogenesis and complex polysaccharide biosynthesis and secretion. As a first step in the application of this system, we have used microscopy to investigate the structure and differentiation of Arabidopsis seed coat mucilage cells, including cell morphogenesis and the synthesis, secretion, and extrusion of mucilage. During seed coat development in Arabidopsis, the epidermal cells of the outer ovule integument grow and differentiate into cells that produce large quantities of mucilage between the primary cell wall and plasma membrane. Concurrent with mucilage production, the cytoplasm is shaped into a column in the center of the cell. Following mucilage secretion the cytoplasmic column is surrounded by a secondary cell wall to form a structure known as the columella. Thus, differentiation of the seed coat mucilage cells involves a highly regulated series of events including growth, morphogenesis, mucilage biosynthesis and secretion, and secondary cell wall synthesis. 相似文献
5.
6.
A 1034 bp cDNA encoding the full length sequence of subunit D of the vacuolar H+-ATPase was cloned from Arabidopsis thaliana. The open reading frame of the cDNA clone vatpD contains 780 bp and codes for a protein of 29.1 kDa with a pI of 9.52. Structural predictions show similarities to subunit gamma of the F-ATP synthases. Identity between subunit D of the vacuolar H+-ATPase of A. thaliana and subunits D from other eukaryotic organisms is in the range of 57% (Bos taurus) to 48% (Candida albicans). Hybridization of genomic DNA with vatpD indicates the existence of one gene copy of subunit D in A. thaliana. Northern blot hybridization and in situ hybridization showed expression of vatpD in all cell types. The expression of subunit D was not modified by salt stress or abscisic acid treatment in A. thaliana. 相似文献
7.
8.
拟南芥液泡膜Na+/H+逆向转运蛋白的研究进展 总被引:2,自引:0,他引:2
拟南芥液泡膜Na /H 逆向转运蛋白是由AtNHX1基因编码的一个在盐胁迫中起重要作用的蛋白。本文综述了AtNHX1的基本结构、功能及作用机制,展望其作为有效植物耐盐基因的前景,并对拟南芥液泡膜Na /H 逆向转运蛋白基因家族其他成员的研究,也做了相应的概括。 相似文献
9.
Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach 总被引:14,自引:0,他引:14
下载免费PDF全文

Endler A Meyer S Schelbert S Schneider T Weschke W Peters SW Keller F Baginsky S Martinoia E Schmidt UG 《Plant physiology》2006,141(1):196-207
The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H(+)-ATPases and H(+)-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel tonoplast transporters, we used a proteomic approach, analyzing the tonoplast fraction of highly purified mesophyll vacuoles of the crop plant barley (Hordeum vulgare). We identified 101 proteins, including 88 vacuolar and putative vacuolar proteins. The Suc transporter (SUT) HvSUT2 was discovered among the 40 vacuolar proteins, which were previously not reported in Arabidopsis (Arabidopsis thaliana) vacuolar proteomic studies. To confirm the tonoplast localization of this Suc transporter, we constructed and expressed green fluorescent protein (GFP) fusion proteins with HvSUT2 and its closest Arabidopsis homolog, AtSUT4. Transient expression of HvSUT2-GFP and AtSUT4-GFP in Arabidopsis leaves and onion (Allium cepa) epidermal cells resulted in green fluorescence at the tonoplast, indicating that these Suc transporters are indeed located at the vacuolar membrane. Using a microcapillary, we selected mesophyll protoplasts from a leaf protoplast preparation and demonstrated unequivocally that, in contrast to the companion cell-specific AtSUC2, HvSUT2 and AtSUT4 are expressed in mesophyll protoplasts, suggesting that HvSUT2 and AtSUT4 are involved in transport and vacuolar storage of photosynthetically derived Suc. 相似文献
10.
Maintenance of redox homeostasis is critical for the survival of all aerobic organisms. In the budding yeast Saccharomyces cerevisiae, as in other eukaryotes, reactive oxygen species (ROS) are generated during metabolism and upon exposure to environmental stresses. The abnormal production of ROS triggers defense mechanisms to avoid the deleterious consequence of ROS accumulation. Here, we show that the Rho1 GTPase is necessary to confer resistance to oxidants in budding yeast. Temperature-sensitive rho1 mutants (rho1(ts)) are hypersensitive to oxidants and exhibit high accumulation of ROS even at a semipermissive temperature. Rho1 associates with Ycf1, a vacuolar glutathione S-conjugate transporter, which is important for heavy metal detoxification in yeast. Rho1 and Ycf1 exhibit a two-hybrid interaction with each other and form a bimolecular fluorescent complex on the vacuolar membrane. A fluorescent-based complementation assay suggests that the GTP-bound Rho1 associates with Ycf1 and that their interaction is enhanced upon exposure to hydrogen peroxide. The rho1(ts) mutants also exhibit hypersensitivity to cadmium, while cells carrying a deletion of YCF1 or mutations in a component of the Pkc1-MAP kinase pathway exhibit little or minor sensitivity to oxidants. We thus propose that Rho1 protects yeast cells from oxidative stress by regulating multiple downstream targets including Ycf1. Since both Rho1 and Ycf1 belong to highly conserved families of proteins, similar mechanisms may exist in other eukaryotes. 相似文献
11.
Differentiation of the Arabidopsis thaliana seed coat cells includes a secretory phase where large amounts of pectinaceous mucilage are deposited to a specific domain of the cell wall. During this phase, Golgi stacks had cisternae with swollen margins and trans-Golgi networks consisting of interconnected vesicular clusters. The proportion of Golgi stacks producing mucilage was determined by immunogold labeling and transmission electron microscopy using an antimucilage antibody, CCRC-M36. The large percentage of stacks found to contain mucilage supports a model where all Golgi stacks produce mucilage synchronously, rather than having a subset of specialist Golgi producing pectin product. Initiation of mucilage biosynthesis was also correlated with an increase in the number of Golgi stacks per cell. Interestingly, though the morphology of individual Golgi stacks was dependent on the volume of mucilage produced, the number was not, suggesting that proliferation of Golgi stacks is developmentally programmed. Mapping the position of mucilage-producing Golgi stacks within developing seed coat cells and live-cell imaging of cells labeled with a trans-Golgi marker showed that stacks were randomly distributed throughout the cytoplasm rather than clustered at the site of secretion. These data indicate that the destination of cargo has little effect on the location of the Golgi stack within the cell. 相似文献
12.
Hirschi Kendal D. Miranda Maricar L. Wilganowski Nathaniel L. 《Plant molecular biology》2001,46(1):57-65
In plants, cytosolic Ca2+ levels are tightly regulated, and changes in cytosolic Ca2+ have been implicated in converting numerous signals into adapted responses. Vacuolar ion transporters are thought to be key mediators of cytosolic Ca2+ concentrations. In an attempt to interpret the role of vacuolar Ca2+ transport in plant processes, we have expressed the yeast vacuolar Ca2+/H+ antiporter, VCX1, in Arabidopsis and tobacco. This transporter localizes to the plant vacuolar membrane. VCX1-expressing Arabidopsis plants displayed increased sensitivity to sodium and other ions. These ion sensitivities could be suppressed by addition of calcium to the media. VCX1-expressing plants demonstrated increased tonoplast-enriched Ca2+/H+ antiport activity as well as increased Ca2+ accumulation. These results suggest that VCX1 expression in Arabidopsis could be a valuable tool with which to experimentally dissect the role of Ca2+ transport around the plant vacuole. 相似文献
13.
拟南芥多药物和有毒化合物排出家族属次级转运蛋白家族,此类转运蛋白与解毒内源的次生代谢物和外源的有毒化合物有关。通过PCR的方法从拟南芥基因组中扩增到该家族成员DTX12的启动子序列,构建双元载体pBI101.2-ProDTX12-GUS,通过农杆菌介导的方法转化拟南芥,然后对转基因植株用GUS底物进行组织化学显色分析。同时,通过半定量RT-PCR的方法,进一步验证了DTX12在不同组织中的表达情况。结果表明该基因在成熟的花器官的花药中和幼苗的根尖特异表达,另外,在子叶的尖端也有少量的表达。由于DTX12编码的是一个具有转运有毒化合物功能的蛋白,推测其功能可能是转运与细胞分裂或生长有关的次生代谢物。 相似文献
14.
The effect of vacuolar H(+)-ATPase (V-ATPase) null mutations on the targeting of the plasma membrane H(+)-ATPase (Pma1p) through the secretory pathway was analyzed. Gas1p, which is another plasma membrane component, was used as a control for the experiments with Pma1p. Contrary to Gas1p, which is not affected by the deletion of the V-ATPase complex in the V-ATPase null mutants, the amount of Pma1p in the plasma membrane is markedly reduced, and there is a large accumulation of the protein in the endoplasmic reticulum. Kex2p and Gef1p, which are considered to reside in the post-Golgi vesicles, were suggested as required for the V-ATPase function; hence, their null mutant phenotype should have been similar to the V-ATPase null mutants. We show that, in addition to the known differences between those yeast phenotypes, deletions of KEX2 or GEF1 in yeast do not affect the distribution of Pma1p as the V-ATPase null mutant does. The possible location of the vital site of acidification by V-ATPase along the secretory pathway is discussed. 相似文献
15.
Summary The morphology and fine structure of aleurone cells of soybean [Glycine max (L.) Merr.] seed coats were analyzed with transmission electron microscopy for the period of rapid seed fill up to physiological maturity. Thin sections and freeze-fracture replicas were prepared for each stage. The aleurone is a tissue lining the embryo sac and consists of a single layer of cells attached to the aerenchyma of the seed coat proper. During seed fill, aleurone cells contained numerous Golgi-derived vesicles in the basal region of the cytoplasm that were either free or attached to the plasma membrane along the lateral and basal regions of the cell wall. Correspondingly, the Golgi apparatus were well developed with individual dictyosomes having 5 to 8, highly fenestrated stacked cisternae. The degree of fenestration along the periphery of each cisterna increased from the cis to trans region. Rough endoplasmic reticulum (RER) was also abundant, often consisting of up to 30, stacked swollen cisternae which occupied large regions of cytoplasm. Plasmodesmata which connected adjacent aleurone cells was not observed along the dorsal walls of aleurone cells that faced aerenchyma. At physiological maturity, dictyosome cisternae were less fenestrated and had fewer associated secretory vesicles. Stacked lamellae of RER were absent, being replaced by short tubular cisternae and small vesicles. At physiological maturity, the aleurone cells had thick walls, and contained numerous lipid bodies in apposition to the plasma membrane. The cytoplasm appeared densely stained in thin-sections and contained protein bodies and amyloplasts with large starch grains. We conclude that during the period of rapid seed fill aleurone cells produce, package, transport and secrete vesicular contents toward the embryo, that is followed at physiological maturity by the storage of lipid, protein and starch in the same cells. The embryo is the most likely destination for secretory products during the period of rapid seed fill. The fate of the stored food reserves in aleurone cells at physiological maturity may be analogous to that of aleurone tissue of grasses, being utilized during imbibition for processes important to germination. 相似文献
16.
17.
Walden M Accardi A Wu F Xu C Williams C Miller C 《The Journal of general physiology》2007,129(4):317-329
The CLC-family protein CLC-ec1, a bacterial homologue of known structure, stoichiometrically exchanges two Cl(-) for one H(+) via an unknown membrane transport mechanism. This study examines mutations at a conserved tyrosine residue, Y445, that directly coordinates a Cl(-) ion located near the center of the membrane. Mutations at this position lead to "uncoupling," such that the H(+)/Cl(-) transport ratio decreases roughly with the volume of the substituted side chain. The uncoupled proteins are still able to pump protons uphill when driven by a Cl(-) gradient, but the extent and rate of this H(+) pumping is weaker in the more uncoupled variants. Uncoupling is accompanied by conductive Cl(-) transport that is not linked to counter-movement of H(+), i.e., a "leak." The unitary Cl(-) transport rate, measured in reconstituted liposomes by both a conventional initial-velocity method and a novel Poisson dilution approach, is approximately 4,000 s(-1) for wild-type protein, and the uncoupled mutants transport Cl(-) at similar rates. 相似文献
18.
19.
Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells 总被引:1,自引:2,他引:1
下载免费PDF全文

We generated fusions between three Arabidopsis (Arabidopsis thaliana) tonoplast intrinsic proteins (TIPs; alpha-, gamma-, and delta-TIP) and yellow fluorescent protein (YFP). We also produced soluble reporters consisting of the monomeric red fluorescent protein (RFP) and either the C-terminal vacuolar sorting signal of phaseolin or the sequence-specific sorting signal of proricin. In transgenic Arabidopsis leaves, mature roots, and root tips, all TIP fusions localized to the tonoplast of the central vacuole and both of the lumenal RFP reporters were found within TIP-delimited vacuoles. In embryos from developing, mature, and germinating seeds, all three TIPs localized to the tonoplast of protein storage vacuoles. To determine the temporal TIP expression patterns and to rule out mistargeting due to overexpression, we generated plants expressing YFP fused to the complete genomic sequences of the three TIP isoforms. In transgenic Arabidopsis, gamma-TIP expression was limited to vegetative tissues, but specifically excluded from root tips, whereas alpha-TIP was exclusively expressed during seed maturation. delta-TIP was expressed in vegetative tissues, but not root tips, at a later stage than gamma-TIP. Our findings indicate that, in the Arabidopsis tissues analyzed, two different vacuolar sorting signals target soluble proteins to a single vacuolar location. Moreover, TIP isoform distribution is tissue and development specific, rather than organelle specific. 相似文献
20.
Schweigel M Martens H 《American journal of physiology. Gastrointestinal and liver physiology》2003,285(1):G45-G53
The K+-insensitive component of Mg2+ influx in primary culture of ruminal epithelial cells (REC) was examined by means of fluorescence techniques. The effects of extracellular anions, ruminal fermentation products, and transport inhibitors on the intracellular free Mg2+ concentration ([Mg2+]i), Mg2+ uptake, and intracellular pH were determined. Under control conditions (HEPES-buffered high-NaCl medium), the [Mg2+]i of REC increased from 0.56 +/- 0.14 to 0.76 +/- 0.06 mM, corresponding to a Mg2+ uptake rate of 15 microM/min. Exposure to butyrate did not affect Mg2+ uptake, but it was stimulated (by 84 +/- 19%) in the presence of CO2/HCO(-)3. In contrast, Mg2+ uptake was strongly diminished if REC were suspended in HCO(-)3-buffered high-KCl medium (22.3 +/- 4 microM/min) rather than in HEPES-buffered KCl medium (37.5 +/- 6 microM/min). After switching from high- to low-Cl- solution, [Mg2+]i was reduced from 0.64 +/- 0.09 to 0.32 +/- 0.16 mM and the CO2/HCO(-)3-stimulated Mg2+ uptake was completely inhibited. Bumetanide and furosemide blocked the rate of Mg2+ uptake by 64 and 40%, respectively. Specific blockers of vacuolar H+-ATPase reduced the [Mg2+]i (36%) and Mg2+ influx (38%) into REC. We interpret this data to mean that the K+-insensitive Mg2+ influx into REC is mediated by a cotransport of Mg2+ and Cl- and is energized by an H+-ATPase. The stimulation of Mg2+ transport by ruminal fermentation products may result from a modulation of the H+-ATPase activity. 相似文献