共查询到20条相似文献,搜索用时 8 毫秒
1.
While protein purification has long been dominated by standard chromatography, the relatively high cost and complex scale‐up have promoted the development of alternative non‐chromatographic separation methods. Here we developed a new non‐chromatographic affinity method for the purification of proteins expressed in Escherichia coli. The approach is to genetically fuse the target proteins with an affinity tag. Direct purification and recovery can be achieved using a thermo‐responsive elastin‐like protein (ELP) scaffold containing the capturing domain. Naturally occurring cohesin–dockerin pairs, which are high‐affinity protein complex responsible for the formation of cellulosome in anaerobic bacteria, were used as the model. By exploiting the highly specific interaction between the dockerin and cohesin domain from Clostridium thermocellum and the reversible aggregation property of ELP, highly purified and active dockerin‐tagged proteins, such as the endoglucanase CelA, chloramphenicol acetyl transferase (CAT), and enhanced green fluorescence protein (EGFP), were recovered directly from crude cell extracts in a single thermal precipitation step with yields achieving over 90%. Incorporation of a self‐cleaving intein domain enabled rapid removal of the affinity tag from the target proteins, which was subsequently removed by another cycle of thermal precipitation. This method offers great flexibility as a wide range of affinity tags and ligands can be used. Biotechnol. Bioeng. 2012; 109: 2829–2835. © 2012 Wiley Periodicals, Inc. 相似文献
2.
3.
Karpol A Kantorovich L Demishtein A Barak Y Morag E Lamed R Bayer EA 《Journal of molecular recognition : JMR》2009,22(2):91-98
Efficient degradation of cellulose by the anaerobic thermophilic bacterium, Clostridium thermocellum, is carried out by the multi-enzyme cellulosome complex. The enzymes on the complex are attached in a calcium-dependent manner via their dockerin (Doc) module to a cohesin (Coh) module of the cellulosomal scaffoldin subunit. In this study, we have optimized the Coh-Doc interaction for the purpose of protein affinity purification. A C. thermocellum Coh module was thus fused to a carbohydrate-binding module, and the resultant fusion protein was applied directly onto beaded cellulose, thereby serving as a non-covalent "activation" procedure. A complementary Doc module was then fused to a model protein target: xylanase T-6 from Geobacillus stearothermophilus. However, the binding to the immobilized Coh was only partially reversible upon treatment with EDTA, and only negligible amounts of the target protein were eluted from the affinity column. In order to improve protein elution, a series of truncated Docs were designed in which the calcium-coordinating function was impaired without appreciably affecting high-affinity binding to Coh. A shortened Doc of only 48 residues was sufficient to function as an effective affinity tag, and highly purified target protein was achieved directly from crude cell extracts in a single step with near-quantitative recovery of the target protein. Effective EDTA-mediated elution of the sequestered protein from the column was the key step of the procedure. The affinity column was reusable and maintained very high levels of capacity upon repeated rounds of loading and elution. Reusable Coh-Doc affinity columns thus provide an efficient and attractive approach for purifying proteins in high yield by modifying the calcium-binding loop of the Doc module. 相似文献
4.
Recombinant mouse 5,10-methenyltetrahydrofolate synthetase (MTHFS) was expressed in Escherichia coli and shown to co-purify with a chromophore that had a lambda(max) at 320nm. The chromophore remained bound to MTHFS during extensive dialysis, but dissociated from MTHFS when its substrate, 5-formyltetrahydrofolate, was bound. The chromophore was identified as an oxidized catecholamine by mass spectrometry and absorption spectroscopy. Purified recombinant mouse MTHFS and rabbit liver MTHFS proteins were shown to bind oxidized N-acetyldopamine (NADA) tightly. The addition of NADA to cell culture medium accelerated markedly folate turnover and decreased both folate accumulation and total cellular folate concentrations in MCF-7 cells. Expression of the MTHFS cDNA in MCF-7 cells increased the concentration of NADA required to deplete cellular folate. The results of this study are the first to identify a link between catecholamines and one-carbon metabolism and demonstrate that NADA accelerates folate turnover and impairs cellular folate accumulation in MCF-7 cells. 相似文献
5.
6.
7.
Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. 总被引:8,自引:2,他引:8 下载免费PDF全文
Here, we describe the cloning and further characterization of chicken ARBP, an abundant nuclear protein with a high affinity for MAR/SARs. Surprisingly, ARBP was found to be homologous to the rat protein MeCP2, previously identified as a methyl-CpG-binding protein. A region spanning 125 amino acids in the N-terminal halves is 96.8% identical between chicken ARBP and rat MeCP2. A deletion mutation analysis using Southwestern and band shift assays identified this highly conserved region as the MAR DNA binding domain. Alignment of chicken ARBP with rat and human MeCP2 proteins revealed six trinucleotide amplifications generating up to 34-fold repetitions of a single amino acid. Because MeCP2 was previously localized to pericentromeric heterochromatin in mouse chromosomes, we analyzed the in vitro binding of ARBP to various repetitive sequences. In band shift experiments, ARBP binds to two chicken repetitive sequences as well as to mouse satellite DNA with high affinity similar to that of its binding to chicken lysozyme MAR fragments. In mouse satellite DNA, use of several footprinting techniques characterized two high-affinity binding sites, whose sequences are related to the ARBP binding site consensus in the chicken lysozyme MAR (5'-GGTGT-3'). Band shift experiments indicated that methylation increased in vitro binding of ARBP to mouse satellite DNA two- to fivefold. Our results suggest that ARBP/MeCP2 is a multifunctional protein with roles in loop domain organization of chromatin, the structure of pericentromeric heterochromatin, and DNA methylation. 相似文献
8.
A soluble protein that interacts with a range of cytokinins was extensively purified from wheat (Triticum aestivum L.) germ. This protein has a K
d
for kinetin of 2×10-7 M. The binding of kinetin to the protein is inhibited by low concentrations of synthetic and naturally-occurring cytokinins including N6-benzyladenine, N6-benzyladenosine, kinetin riboside, N6-dimethylallyladenine, N6-dimethylallyladenosine, zeatin, zeatin riboside, N6-dimethyladenine and N6-dimethyladenosine. Adenine, adenosine and several non-N6-substituted adenine derivatives were ineffective as inhibitors of kinetin binding. While N6-butyryl-3,5-cyclic AMP, N6,2-O-dibutyryl-3,5-cyclic AMP and 2,3-cyclic AMP inhibited binding of kinetin to the protein, 3,5-cyclic AMP was ineffective. The kinetin-binding protein is heat-labile and pronase-sensitive. Kinetin-binding activity exactly co-chromatographs with a single peak of carbohydrate and protein on gel-filtration and is displaced from concanavalin A-Sepharose 4B by -methylglucoside. On gel filtration, the kinetin-binding protein behaves as a soluble protein with an apparent molecular weight of 180,000 daltons. 相似文献
9.
10.
Junfeng Luo 《Analytical biochemistry》2009,387(2):143-5019
A method for determining methylation density of target CpG islands has been established. In the method, DNA microarray was prepared by spotting a set of PCR products amplified from bisulfite-converted sample DNAs. The PCR products on the microarray were treated by SssI methyltransferase and labeled with TAMRA fluorescence. A recombinant, antibody-like methyl-CpG-binding protein labeled with Cy5 fluorescence was used to identify symmetrical methyl-CpG dinucleotide of the PCR products on the microarray. By use of a standard curve with control mixtures, the ratio of two fluorescence signals can be converted into percentage values to assess methylation density of targeted fragments. We obtained the methylation density of six CpG islands on the two tumor suppressor genes of CDK2A and CDK2B from seven cancer cell line samples and two normal blood samples. The validity of this method was tested by bisulfite sequencing. This method not only allows the quantitative analysis of regional methylation density of a set of given genes but also could provide information of methylation density for a large amount of clinical samples. 相似文献
11.
12.
Fuks F Hurd PJ Wolf D Nan X Bird AP Kouzarides T 《The Journal of biological chemistry》2003,278(6):4035-4040
13.
Perturbations in cytosine methylation signals are observed in the majority of human tumors; however, it is as yet unknown how methylation patterns become altered. Epigenetic changes can result in the activation of transforming genes as well as in the silencing of tumor suppressor genes. We report that methyl-CpG-binding proteins (MBPs), specific for methyl-CpG dinucleotides, bind with high affinity to halogenated pyrimidine lesions, previously shown to result from peroxidase-mediated inflammatory processes. Emerging data suggest that the initial binding of MBPs to methyl-CpG sequences may be a seeding event that recruits chromatin-modifying enzymes and DNA methyltransferase, initiating a cascade of events that result in gene silencing. MBD4, a protein with both methyl-binding and glycosylase activity demonstrated repair activity against a series of 5-substituted pyrimidines, with the greatest efficiency against 5-chlorouracil, but undetectable activity against 5-chlorocytosine. The data presented here suggest that halogenated pyrimidine damage products can potentially accumulate and mimic endogenous methylation signals. 相似文献
14.
15.
A high-affinity calcium-dependent calmodulin-binding protein (CaMBP) has been isolated from Electrophorus electricus main electric organ. This 55-kDa CaMBP has been purified to homogeneity by ion exchange and calmodulin-Sepharose affinity chromatography and electrophoretic elution from preparative sodium dodecyl sulfate-polyacrylamide gels. Antibodies against the 55-kDa CaMBP were raised in sheep and were affinity purified. A 47-kDa high-affinity CaMBP species was demonstrated by limited protease digestion and immunoblot analysis to be derived from the 55-kDa CaMBP. The 55-kDa CaMBP has also been isolated from skeletal muscle. It is not detectable by immunoblot analysis in nonexcitable tissues. Characterization of the 55-kDa high-affinity calmodulin-acceptor protein may further elucidate the role of calcium-calmodulin in the regulation of bioelectricity. 相似文献
16.
MeCP2 has been identified as a chromatin-associated protein that recognizes MAR elements as well as methyl-CpGs. To characterize target sequences of MeCP2 in human cells, we employed two complementary methods. First, by use of a preparative chromatin immunoprecipitation protocol, we created from MCF7 cells a library enriched with sequences bound to MeCP2. A total of 154 representative clones were sequenced and analyzed. A large fraction of clones was found to be associated with retrotransposons, mostly with Alu repeats. A subgroup of four clones is derived from putative MARs; one clone is associated with a CpG island, and four clones contain alphoid repeats. Classical satellite DNAs II and III are not represented among clones, although they are heavily methylated. Second, using indirect immunofluorescence microscopy, we show that MeCP2 staining of human metaphase chromosomes has a dotted to knobby appearance with a reduced level of staining of centromeric regions of some chromosomes. On the other hand, an anti-5-methylcytosine antibody preferentially stained the juxtacentromeric regions of chromosomes 1, 9, and 16, which habor highly methylated, classical satellite DNAs, and methylated alphoid sequences in centromeric regions of several other chromosomes with reduced intensity. In interphase MCF7 cells, the distribution of MeCP2 exhibits a granular appearance throughout the nucleus. This distribution does not parallel that of methylated cytosine and heterochromatin. The selective binding behavior of MeCP2 revealed by these results (preference for murine major satellite DNA, Alu sequences, MARs, and CpG islands) is explained by its ability to recognize the sequence information (guanine bases) adjacent to CpG (TpG) as demonstrated in previous footprinting experiments. 相似文献
17.
The presence of a folate binding protein of high-affinity type (affinity constant 3.1010M–1, maximum folate binding 1.4 nM) in human semen was demonstrated in equilibrium dialysis experiments (37°C, pH 7.4) with the radioligand3H-folate. Radioligand dissociation from the binding protein was slow at pH 7.4, but rapid at pH 3.5. By use of rabbit antibodies against 25 kDa human milk folate binding protein we determined the concentration of folate binding protein in 16 speciments of human semen in an enzyme-linked immunosorbent assay. The concentration of immunoreactive folate binding protein was independent of the number of spermatozoa in individual specimens. Gel filtration showed that immunoreactive and radioligand bound folate binding protein coeluted in two peaks: a major one of 100 kDa and a minor one of 25 kDa. 相似文献
18.
Identification of a high-affinity binding protein for a hepta-beta-glucoside phytoalexin elicitor in soybean. 总被引:1,自引:0,他引:1
A putative receptor protein for a hepta-beta-glucoside phytoalexin elicitor was identified by photoaffinity labeling of detergent-solubilized proteins from soybean root membranes. Incubation of partially purified beta-glucan-binding proteins with a photolabile 125I-labeled 2-(4-azidophenyl)ethyl-amino conjugate of the heptaglucoside elicitor, followed by irradiation with ultraviolet light (366 nm) resulted in specific labeling of a 70-kDa band in SDS/PAGE. Half-maximal inhibition of the 125I-labeling of the protein band by underivatized hepta-beta-glucoside was achieved by 15 nM heptaglucoside. Analysis of the affinity of radiolabel incorporation into the protein by ligand-saturation experiments, gave an apparent Kd value of 3 nM, in full agreement with the results from radioligand-binding studies. Good correlation was also observed between the amount of radiolabel incorporated into the protein and the binding activity of the fractions obtained at different stages in the purification of heptaglucoside-binding activity. Photoaffinity labeling of proteins purified by glucan-affinity chromatography showed the 70-kDa band as the main component along with weak 125I-labeling of a 100-kDa band. The 70-kDa band was also the major protein visualized by silver staining after SDS/PAGE of this fraction, suggesting that it is the predominant form of the heptaglucoside-binding proteins in detergent-solubilized soybean membranes. 相似文献
19.
20.
We describe a reversible staining technique, using MemCode, a reversible protein stain by which proteins can be visualized on nitrocellulose and polyvinylidine fluoride (PVDF) membranes without being permanently fixed to the membrane itself. This allows subsequent immunoblot analysis of the proteins to be performed. The procedure is applicable only to protein blots on nitrocellulose and PVDF membranes. MemCode is a reversible protein stain composed of copper as a part of an organic complex that interacts noncovalently with proteins. MemCode shows rapid protein staining, taking 30s to 1 min for completion. The method is simple and utilizes convenient application conditions that are compatible with the matrix materials and the protein. The stain is more sensitive than any previously described dye-based universal protein staining system. The turquoise-blue-stained protein bands do not fade with time and are easy to photograph compared to those stained with Ponceau S. Absorbance in the blue region of the spectrum offers good properties for photo documentation and avoids interference from common biological chromophores. The stain on the protein is easily reversible in 2 min for nitrocellulose membrane and in 10 min for PVDF membrane with MemCode stain eraser. The stain is compatible with general Western blot detection systems, and membrane treatment with MemCode stain does not interfere with conventional chemiluminescent or chromogenic detection using horseradish peroxide and alkaline phosphatase substrates. The stain is also compatible with N-terminal sequence analysis of proteins. 相似文献