首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effectiveness of the "expiration reflex" in 10 anesthetized spontaneously breathing cats. The expiration reflex was produced by mechanical stimulation of the vocal folds and electrical stimulation of the superior laryngeal nerve at different moments in the respiratory cycle and at various levels of respiratory chemical drive. The effectiveness of the expiration reflex was evaluated from sudden changes in expiratory flow immediately following the stimulation. Both mechanical and electrical stimulations given during early inspiration caused little or no expiratory efforts, whereas stimulations given during early expiration or hypocapnic apnea produced a typical expiration reflex. Changes in arterial CO2 and O2 partial pressures influenced neither the relationships between the stimulation and its effect on the expiration reflex nor the strength of the expiration reflex. These results indicate that the timing of stimulation with relation to the phase of the respiratory cycle is critical to its effect on the expiration reflex and that changes in respiratory chemical drive do not modify the expiration reflex characteristics.  相似文献   

2.
A conditioned defensive reflex to photic stimulation was produced in rabbits in computer-controlled experiments during regular electrical stimulation of the septum. During reflex formation spectral-correlation analysis was undertaken of sensomotor and visual cortical potentials and hippocampal potentials. In each rabbit the reflex to light was produced during septal stimulation at a definite frequency (2, 4, 7, and 9 Hz). Regular electrical stimulation of the septum at frequencies of 7 and 9 Hz accelerated conditioning whereas stimulation at a frequency of 2 Hz prevented formation of the temporary connection (the reflex appeared at the 35th combination). By changing the frequency of electrical stimulation of the septum, the speed of learning can thus be influenced. It is suggested that the role of the septum is to set a definite level of synchronization of brain processes at the optimal value for conduction of excitation from its afferent to its effector system.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 3, pp. 239–244, May–June, 1978.  相似文献   

3.
We investigated respiratory reflex responses to tracheal mucosa stimulation induced by injection of distilled water in 13 female patients under three different depths of enflurane anesthesia (0.7, 1.0, and 1.3 minimum alveolar concentration). Detailed analysis of the types of reflex responses revealed that there are at least six different responses: 1) the apneic reflex, 2) the expiration reflex, 3) spasmodic, panting breathing, 4) the cough reflex, 5) slowing of breathing, and 6) rapid, shallow breathing. Among these reflex responses, the cough reflex was the most sensitive and the apneic reflex followed by slowing of breathing was the most resistant to deepening anesthesia, whereas the sensitivity of other types of reflex responses was in between. Our results indicate that the types of respiratory reflex responses to tracheal mucosa stimulation are associated with depths of anesthesia and that the differences in sensitivity to anesthesia may be a valuable sign in clinical assessment of depth of anesthesia.  相似文献   

4.
In sheep with chronic fistulae of the small intestine and rumen the participation of the beta-adrenergic receptor was investigated in the enteroruminal reflex and enteroenteric reflex using the method of pharmacological analysis. The movements of the segments of the digestive tract with fistulae were recorded by the balloon method. A solution of hydrochloric acid administered into the ileum caused a reflex stimulation of its motor activity and inhibited the movements of the rumen. Intravenous administration of propranolol before instillation of the acid into the intestine abolished or reduced greatly the reflex inhibition of the movements of the rumen and in the small intestine it enhanced significantly the studied reflex reaction. Thus stimulation of the beta-adrenergic receptor plays an important role in the reflex stimulation of the motor activity of the rumen, and stimulation of the motor activity of the small intestine in the enteroenteric reflex is limited by the effects derived from this receptor.  相似文献   

5.
Animal experiments have shown that the nociceptive reflex can be used as an indicator of central temporal integration in the nociceptive system. The aim of the present study on humans was to investigate whether the nociceptive reflex, evoked by repetitive strong electrical sural nerve stimuli, increased when summation was reported by the volunteers. The reflexes were recorded from the biceps femoris and rectus femoris muscles in eight volunteers following a series of stimulations at 0.1, 1, 2, and 3 Hz. Each series consisted of five consecutive stimuli. Using 0.1- and 1-Hz stimulation, the reflex was not facilitated in the course of the five consecutive stimuli. Following 2- and 3-Hz stimulation, the reflex size (root mean square amplitude) increased significantly during the course of the fifth stimulus. This reflex facilitation was followed by a significant increase (summation) in the pain magnitude when compared with 1- and 0.1-Hz stimulation. Furthermore, the threshold for psychophysical summation could be determined. This threshold (stimulus intensity) decreased when the stimulus frequency (1–5 Hz) of the five consecutive stimuli was increased. The nociceptive reflex and the psychophysical summation threshold might be used to clarify and quantify aspects of temporal summation within the human nociceptive system.  相似文献   

6.
The effect of stimulation of the mesencephalic central gray matter and raphe nuclei on jaw opening reflexes evoked by excitation of high-threshold (dental pulp) and low-threshold (A-alpha) fibers of the infraorbital nerve afferents was studied in cats anesthetized with chloralose and pentobarbital. The jaw opening reflex evoked by stimulation of the dental pulp was shown to be effectively suppressed by conditioning stimulation of the central gray matter and raphe nuclei. The reflex evoked by stimulation of low-threshold infraorbital nerve afferents also was depressed (but less deeply and for a shorter period than the reflex evoked by stimulation of the dental pulp) during stimulation of the raphe nuclei and caudal zone of the central gray matter, but was unchanged after stimulation of the points located in the rostral zone of the central gray matter. Application of single stimuli or bursts of five stimuli with a frequency of 100 Hz had no effect on the reflexes studied. Short-term stimulation with a burst of 10–20 stimuli with a following frequency of 200–400 Hz led to inhibition of the reflexes, which lasted 450–1000 msec. Long-term stimulation of the central gray matter and raphe nuclei for 30 sec with a frequency of 50 Hz caused inhibition of jaw opening reflexes evoked by stimulation of both high- and low-threshold afferents for 60 min. Impulses from the central gray matter and raphe nuclei thus have a mainly inhibitory action on the jaw opening reflex evoked by stimulation of high-threshold afferents, but they act less effectively on the reflex evoked by stimulation of low-thres-hold afferents. The duration of inhibition depends essentially on the parameters of stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 374–387, May–June, 1984.  相似文献   

7.
Experiments were performed in precollicular decerebrate cats to investigate whether proprioceptive volleys originating from Golgi tendon organs and muscle spindles may activate supraspinal descending inhibitory mechanisms. Conditioning stimulation of the distal stump of ventral root filaments of L7 or S1 leading to isometric contraction of the gastrocnemius-soleus (GS) muscle inhibited the monosynaptic reflex elicited by stimulation of the ipsilateral plantaris-flexor digitorum and hallucis longus (Pl-FDHL) nerve. The amount and the time course of this Golgi inhibition were greatly increased by direct cross-excitation of the intramuscular branches of the group Ia afferents due to ephaptic stimulation of the sensory fibers, which occurred when a large number of a fibers had been synchronously activated. The postsynaptic and the presynaptic nature of these inhibitory effects, as well as their segmental origin, have been discussed. In no instance, however, did the stimulation of Golgi tendon organs elicit any late inhibition of the test monosynaptic reflex, which could be attributed to a spino-bulbo-spinal (SBS) reflex. Conditioning stimulation of both primary and secondary endings of muscle spindles, induced by dynamic stretch of the lateral gastrocnemius-soleus (LGS) muscle, was unable to elicit any late inhibition of the medial gastrocnemius (MG) monosynaptic reflex. The only changes observed in this experimental condition were a facilitation of the test reflex during the dynamic stretch of the LGS, followed at the end of the stimulus by a prolonged depression. These effects however were due to segmental interactions, since they persisted after postbrachial section of the spinal cord. Intravenous injection of an anticholinesterase, at a dose which greatly potentiated the SBS reflex inhibition produced by conditioning stimulation of the dorsal root L6, did not alter the changes in time course of the test reflex induced either by muscle contraction or by dynamic muscle stretch. Conditioning stimulation of a muscle nerve activated the supraspinal descending mechanism responsible for the inhibitory phase of the SBS reflex only when the high threshold group III muscle afferents (innervating pressure-pain receptors) had been recruited by the electric stimulus. This finding contrasts with the great availability of the system to the low threshold cutaneous afferents. The proprioceptive afferent volleys originating from Golgi tendon organs as well as from both primary and secondary endings of muscle spindles, contrary to the cutaneous and the high threshold muscle afferent volleys, were apparently unable to elicit not only a SBS reflex inhibition, but also any delayed facilitation of monosynaptic extensor reflexes attributable to inhibition of the cerebellar Purkinje cells.  相似文献   

8.
The authors determined the elicitability of the expiration reflex and the mechanoreceptive sensitivity of the respiratory tract in 35 anaesthetized albino mice. They found that the expiration reflex could be elicited from both the oral and the tracheal end and that its intensity was statistically significantly higher in elicitation from the oral end. The only other pronounced respiratory reflexes evoked by mechanical stimulation of the airways were the sneeze reflex and the aspiration reflex, which is present in most animals. The mechanoreceptors of the tracheal and bronchial mucosa were less sensitive to stimulation. In most cases they did not react at all, or with just a single forced inspiration, and at other times only by a change in respiration frequency and amplitude.  相似文献   

9.
Chronic heart failure (CHF) is well known to be associated with both an enhanced chemoreceptor reflex and an augmented cardiac "sympathetic afferent reflex" (CSAR). The augmentation of the CSAR may play an important role in the enhanced chemoreceptor reflex in the CHF state because the same central areas are involved in the sympathetic outputs of both reflexes. We determined whether chemical and electrical stimulation of the CSAR augments chemoreceptor reflex function in normal rats. Under anesthesia, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. The chemoreceptor reflex was tested by unilateral intra-carotid artery bolus injection of potassium cyanide (KCN) and nicotine. We found that 1) left ventricular epicardial application of capsaicin increased the pressor responses and the RSNA responses to chemoreflex activation induced by both KCN and nicotine; 2) when the central end of the left cardiac sympathetic nerve was electrically stimulated, both the pressor and the RSNA responses to chemoreflex activation induced by KCN were increased; 3) pretreatment with intracerebroventricular injection of losartan (500 nmol) completely prevented the enhanced chemoreceptor reflex induced by electrical stimulation of the cardiac sympathetic nerve; and 4) bilateral microinjection of losartan (250 pmol) into the nucleus tractus solitarii (NTS) completely abolished the enhanced chemoreceptor reflex by epicardial application of capsaicin. These results suggest that both the chemical and electrical stimulation of the CSAR augments chemoreceptor reflex and that central ANG II, specially located in the NTS, plays a major role in these reflex interactions.  相似文献   

10.
Wang GM  Song G  Zhang H 《生理学报》2005,57(4):511-516
本文旨在研究电刺激家兔迷走神经诱导的黑-伯(Hering-Breuer,HB)反射中的学习和记忆现象。选择性电刺激家兔迷走神经中枢端(频率10~100Hz,强度20~60μA,波宽0.3ms,持续60s),观察对膈神经放电的影响。以不同频率电刺激家兔迷走神经可模拟HB反射的两种成分,即类似肺容积增大所致抑制吸气的肺扩张反射和类似肺容积缩小所致加强吸气的肺萎陷反射。(1)长时高频(≥40Hz,60s)电刺激迷走神经可模拟呼吸频率减慢,呼气时程延长的肺扩张反射。随着刺激时间的延长,膈神经放电抑制的程度逐渐衰减,表现为呼吸频率的减慢(主要由呼气时程延长所致)在刺激过程中逐渐减弱或消失,显示为适应性或“习惯化”的现象;刺激结束时呼吸运动呈现反跳性增强,表现为一过性的呼气时程缩短,呼吸频率加快,然后才逐渐恢复正常。长时低频(〈40Hz,60s)电刺激迷走神经可模拟呼吸频率加快、呼气时程缩短的肺萎陷反射。随着刺激时间的延长,膈神经放电增强的程度逐渐衰减,同样表现出“习惯化”现象;刺激结束后,膈神经放电不是突然降低,而是继续衰减,表现为呼气时程逐渐延长,呼吸频率逐渐减慢,直至恢复到前对照水平,表现了刺激后的短时增强效应。(2)HB反射的适应性或“习惯化”程度反向依赖于刺激强度和刺激频率,表现为随着刺激强度和频率的增加,膈神经放电越远离正常基线水平,即爿惯化程度减弱。结果表明,家兔HB反射具有“习惯化”这一非联合型学习现象,反映与其有关的呼吸神经元网络具有突触功能的可翅性,呼吸的中枢调控反射具有一定的适应性。  相似文献   

11.
Previous studies showed that the cardiac response of the baroreceptor reflex (bradycardia) is inhibited during the defense reaction evoked by direct electrical or chemical stimulation of the periaqueductal gray (dPAG) in the rat. Whether central serotonin and nucleus tractus solitarius (NTS) serotonin(3) (5-HT(3)) receptors might participate in this inhibition was investigated in urethane-anesthetized and atenolol-pretreated rats. Our results showed that both electrical and chemical stimulation of the dPAG produced a drastic reduction of the cardiovagal component of the baroreceptor reflex triggered by either intravenous administration of phenylephrine or aortic nerve stimulation. This inhibitory effect of dPAG stimulation on the baroreflex bradycardia was not observed in rats that had been pretreated with p-chlorophenylalanine (300 mg/kg ip daily for 3 days) to inhibit serotonin synthesis. Subsequent 5-hydroxytryptophan administration (60 mg/kg ip), which was used to restore serotonin synthesis, allowed the inhibitory effect of dPAG stimulation on both aortic and phenylephrine-induced cardiac reflex responses to be recovered in p-chlorophenylalanine-pretreated rats. On the other hand, in nonpretreated rats, the inhibitory effect of dPAG stimulation on the cardiac baroreflex response could be markedly reduced by prior intra-NTS microinjection of granisetron, a 5-HT(3) receptor antagonist, or bicuculline, a GABA(A) receptor antagonist. These results show that serotonin plays a key role in the dPAG stimulation-induced inhibition of the cardiovagal baroreceptor reflex response. Moreover, they support the idea that 5-HT(3) and GABA(A) receptors in the NTS contribute downstream to the inhibition of the baroreflex response caused by dPAG stimulation.  相似文献   

12.
This study examined the effect of alcohol on two apnea reflexes considered to be protective mechanisms through which animals and humans preserve vital functions while they are submerged in water. The laryngeal chemoreflex and the trigeminal diving reflex were studied in unanesthetized 1- to 3-wk-old lambs. Reflex stimulation resulted in reduced ventilation or apnea, bradycardia, hypertension, and blood flow redistribution in the dive pattern. After alcohol, reflex stimulation resulted in increased apnea response, preserved blood flow redistribution, but less hypertension. The onset of regular breathing following laryngeal water stimulation was significantly delayed, after alcohol, and mechanical ventilation was used in three lambs to terminate the prolonged poststimulus apnea. Airway occlusion pressure, an index of neuromuscular inspiratory drive, decreased significantly after alcohol. The study demonstrates a potent effect of alcohol on apnea reflex responses. The effect of alcohol on respiratory drive and on the apnea reflex response should be considered when humans ingest alcohol, in particular by those participating in water sports.  相似文献   

13.
The effects of severing the spinal trigeminal tract and its caudal nucleus on high-threshold jaw-opening reflex elicited by tooth pulp stimulation were investigated during experiments on cats under chloralose-Nembutal anesthesia. Low-threshold jaw-opening reflex produced by stimulating the A--infraorbital nerve at an intensity 2–3 thresholds in relation to the most excitable fibers on this nerve was also observed, as well as suppression of these reflexes induced by central gray matter stimulation. It was found that spinal trigeminal tract section produces a 8–52% increase in high-threshold reflex. The amplitude of low-threshold reflex either remained unchanged or showed a slight tendency to rise or fall. Brief stimulation of the central gray matter produced a 100% decrease in high-threshold reflex in intact animals compared with a 40–60% decrease after section of the trigeminal tract. Protracted stimulation of the central gray brought about an 80% decline in high-threshold reflex in intact animals as against 25–30% after section. The degree to which brief stimulation of the central gray produced depression of low-threshold stimulation remained unchanged by trigeminal tract section. Protracted stimulation of the central gray matter brought about a 25–50% reduction in low-threshold reflex in intact animals and a reduction of 75% in three animals and 15–20% in four animals. This implied that the caudal nucleus of the spinal trigeminal tract exerts a more substantial influence on the process of high- than low-threshold reflex inhibition when the central gray matter is stimulated.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 362–368, May–June, 1987.  相似文献   

14.
The behavioral effect of electrical stimulation of the lateral hypothalamus with a current of equal parameters in chronic experiments on dogs depended on the signal significance of the surroundings. Stimulation of the lateral hypothalamus against the background of a defensive situational reflex in dogs which were in an experimental situation for the first time, far from evoking orientation to food and the act of feeding, enhanced the background fear reaction. After transformation of the defensive signal significance of the situation into an alimentary one, stimulation of the lateral hypothalamus began to activate the alimentary instrumental reflex and the act of feeding. However, at first the former was manifested irregularly. Combinations of stimulation of the lateral hypothalamus and achievement of the alimentary instrumental reflex with subsequent reinforcement stabilized and enhanced the alimentary instrumental reflex to the stimulation of the lateral hypothalamus.  相似文献   

15.
Activation of sympathetic neural traffic via the vestibular system is referred to as the vestibulosympathetic reflex. Investigations of the vestibulosympathetic reflex in humans have been limited to the past decade, and the importance of this reflex in arterial blood pressure regulation is still being determined. This review provides a summary of sympathetic neural responses to various techniques used to engage the vestibulosympathetic reflex. Studies suggest that activation of the semicircular canals using caloric stimulation and yaw rotation do not modulate muscle sympathetic nerve activity (MSNA) or skin sympathetic nerve activity (SSNA). In contrast, activation of the otolith organs appear to alter MSNA, but not SSNA. Specifically, head-down rotation and off-vertical axis rotation increase MSNA, while sinusoidal linear accelerations decrease MSNA. Galvanic stimulation, which results in a nonspecific activation of the vestibule, appears to increase MSNA if the mode of delivery is pulse trained. In conclusion, evidence strongly supports the existence of a vestibulosympathetic reflex in humans. Furthermore, attenuation of the vestibulosympathetic reflex is coupled with a drop in arterial blood pressure in the elderly, suggesting this reflex may be important in human blood pressure regulation.  相似文献   

16.
In older Aplysia, the central nervous system (CNS) (abdominal ganglion) exerts suppressive and facilitatory control over the peripheral nervous system (PNS) which initially mediates the gill withdrawal reflex and its subsequent habituation evoked by tactile stimulation of the siphon. In young animals, both the suppressive and facilitatory CNS control were found to be absent. In older animals, removal of branchial nerve (Br) input to the gill resulted in a significantly reduced reflex latency and, with ctenidial (Ct) and siphon (Sn) nerves intact, a significantly increased reflex amplitude and an inability of the reflex to habituate with repeated siphon stimulation. In young animals, removal of Br had no effect on reflex latency and with Ct and Sn intact, the reflex amplitude latency was not increased and the reflex habituated. Older animals can easily discriminate between different intensity stimuli applied to the siphon as evidenced by differences in reflex amplitude, rates of habituation, and evoked neural activity. On the other hand, young animals cannot discriminate well between different stimulus intensities. The lack of CNS control in young animals was found to be due to incompletely developed neural processes within the abdominal ganglion and not the PNS. The lack of CNS control in young Aplysia results in gill reflex behaviours being less adaptive in light of changing stimulus conditions, but may be of positive survival value in that the young will not habituate as easily. The fact that CNS control is present in older animals strengthens the idea that in any analysis of the underlying neural mechanisms of habituation the entire integrated CNS-PNS must be taken into account.  相似文献   

17.
Mechanical stimulation of the pharyngeal areas readily elicits reflex swallowing. However, it is much more difficult for electrical stimulation of the glossopharyngeal nerve (GPN) to evoke reflex swallowing than it is for stimulation of the superior laryngeal nerve (SLN) to do so. These paradoxical findings remain unexplained; hence, the main purpose of this study was to explain this contradiction by using a urethane-anesthetized rat. Mechanical stimulation easily elicited reflex swallowing from the pharynx. The posterior pillars, posterior pharyngeal wall, and the soft palate of the rat were extremely reflexogenic areas for swallowing. Sectioning the pharyngeal branch of the GPN (GPN-ph), however, eliminated the swallowing reflex from these areas. In contrast, sectioning the lingual branch of the GPN had no effect on the elicitation of swallowing. Electrical stimulation of the GPN-ph and SLN elicited sequentially occurring swallows. The relationship between stimulus frequency and the latency of swallowing for the GPN-ph was approximately the same as that for the SLN. These results indicate that the GPN-ph plays a major role in the initiation of reflex swallowing from the pharynx in rats.  相似文献   

18.
This study investigated the efficacy of magnetic stimulation on the reflex cardiovascular responses induced by gastric distension in anesthetized rats and compared these responses to those influenced by electroacupuncture (EA). Unilateral magnetic stimulation (30% intensity, 2 Hz) at the Jianshi-Neiguan acupoints (pericardial meridian, P 5-6) overlying the median nerve on the forelimb for 24 min significantly decreased the reflex pressor response by 32%. This effect was noticeable by 20 min of magnetic stimulation and continued for 24 min. Median nerve denervation abolished the inhibitory effect of magnetic stimulation, indicating the importance of somatic afferent input. Unilateral EA (0.3-0.5 mA, 2 Hz) at P 5-6 using similar durations of stimulation similarly inhibited the response (35%). The inhibitory effects of EA occurred earlier and were marginally longer (20 min) than magnetic stimulation. Magnetic stimulation at Guangming-Xuanzhong acupoints (gallbladder meridian, GB 37-39) overlying the superficial peroneal nerve on the hindlimb did not attenuate the reflex. Intravenous naloxone immediately after termination of magnetic stimulation reversed inhibition of the cardiovascular reflex, suggesting involvement of the opioid system. Also, intrathecal injection of delta- and kappa-opioid receptors antagonists, ICI174,864 (n=7) and nor-binaltorphimine (n=6) immediately after termination of magnetic stimulation reversed inhibition of the cardiovascular reflex. In contrast, the mu-opioid antagonist CTOP (n=7) failed to alter the cardiovascular reflex. The endogenous neurotransmitters for delta- and kappa-opioid receptors, enkephalins and dynorphin but not beta-endorphin, therefore appear to play significant roles in the spinal cord in mediating magnetic stimulation-induced modulation of cardiovascular reflex responses.  相似文献   

19.
We studied changes of the H reflex recorded from the m. soleus, which were evoked by conditioning transcutaneous stimulation of the n. tibialis and n. peroneous comm. of the contralateral leg. In both cases, rather similar two-phase changes in the amplitude of the tested H reflex were observed. After a latent period (50 to 60 msec), the reflex was facilitated for about 300 msec, with the maximum at an about 100-msec-long interval. Then, facilitation was replaced by inhibition; the time course of the latter at test intervals longer than 500 msec could be satisfactorily approximated by a logarithmic curve. The mean durations of inhibition calculated with the use of a least-square technique were 4.0 and 2.7 sec in the cases of stimulation of n. tibialis and n. peroneous comm., respectively. Facilitation of the reflex was initiated with the intensity of conditioning stimulation corresponding to the threshold for excitation of cutaneous receptors. Facilitation could also be evoked by electrical stimulation of the skin in the contralateral popliteal dimple outside the projections of the above-mentioned nerves. Inhibition of the H reflex was evoked only with greater intensities of transcutaneous stimulation of the contralateral nerves corresponding to activation of low-threshold afferents of the above-mentioned nerves. The examined inhibition of the H reflex is probably of a presynaptic nature because it was not eliminated by tonic activation of the motoneurons of the tested muscle evoked by voluntary sole flexion. Long-lasting contralateral presynaptic inhibition can play a noticeable role in redistribution of the tone of skeletal muscles in the course of the motor activity. Neirofiziologiya/Neurophysiology, Vol. 37, No. 4, pp. 372–378, July–August, 2005.  相似文献   

20.
Recently, we found that gentle mechanical skin stimulation inhibits the micturition reflex in anesthetized rats. However, the central mechanisms underlying this inhibition have not been determined. This study aimed to clarify the central neural mechanisms underlying this inhibitory effect. In urethane-anesthetized rats, cutaneous stimuli were applied for 1 min to the skin of the perineum using an elastic polymer roller with a smooth, soft surface. Inhibition of rhythmic micturition contractions by perineal stimulation was abolished by naloxone, an antagonist of opioidergic receptors, administered into the intrathecal space of the lumbosacral spinal cord at doses of 2–20 μg but was not affected by the same doses of naloxone administered into the subarachnoid space of the cisterna magna. Next, we examined whether perineal rolling stimulation inhibited the descending and ascending limbs of the micturition reflex. Perineal rolling stimulation inhibited bladder contractions induced by electrical stimulation of the pontine micturition center (PMC) or the descending tract of the micturition reflex pathway. It also inhibited the bladder distension-induced increase in the blood flow of the dorsal cord at L5–S1, reflecting the neural activity of this area, as well as pelvic afferent-evoked field potentials in the dorsal commissure at the lumbosacral level; these areas contain long ascending neurons to the PMC. Neuronal activities in this center were also inhibited by the rolling stimulation. These results suggest that the perineal rolling stimulation activates the spinal opioidergic system and inhibits both ascending and descending transmissions of the micturition reflex pathway in the spinal cord. These inhibitions would lead to the shutting down of positive feedback between the bladder and the PMC, resulting in inhibition of the micturition reflex. Based on the central neural mechanisms we show here, gentle perineal stimulation may be applicable to several different types of overactive bladder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号