首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Germination and seedling growth of cotton: salinity-calcium interactions   总被引:8,自引:2,他引:6  
Abstract. The effects of NaCl salinity on germination and early seedling growth of cotton were studied. Germination was both delayed and reduced by 200 mol m−3 NaCl in the presence of a complete nutrient medium. Seedlings, 7–9 d old, were greatly reduced in fresh weight by salinity. The addition of supplemental Ca2+ (10 mol m−3 as SO42− or Cl) to the medium did not improve germination but, to a large degree, offset the reduction in root growth caused by NaCl. Roots growing in the high salt medium without supplemental Ca2+ appeared infected by microbes. The cation specificity of the beneficial Ca2+ effect on growth was ascertained by testing additions of MgSO4 or KCl to the NaCl treatments. The contents of K4 and Ca2+ were reduced in both roots and shoots by the NaCl treatments. Supplemental Ca2+ partially offset this effect for K4 in the roots and for Ca2+ in both roots and shoots. Sodium contents were not affected by the supplemental Ca2+. It is concluded that the beneficial effect of high Ca2+ concentrations on root growth of cotton seedlings in a saline environment may be due to maintenance of K/Na-selectivity and adequate Ca status in the root.  相似文献   

2.
Previous results in our laboratory indicated that a reduced Mn concentration in the leaves of barley was highly correlated with the reduced relative growth and net assimilation rates of salt-stressed plants. If Mn deficiency limits the growth of salt-stressed barley, then increasing leaf Mn concentrations should increase growth. In the present study, the effect of supplemental Mn on the growth of salt-stressed barley ( Hordeum vulgare L. cv. CM 72) was tested to determine if a salinity-induced Mn deficiency was limiting growth. Plants were salinized with 125 mol m−3 NaCl and 9.6 mol m−3 CaCl2. Supplemental Mn was applied in 2 ways: 1) by increasing the Mn concentration in the solution culture and 2) by spraying Mn solutions directly onto the leaves. Growth was markedly inhibited at this salinity level. Dry matter production was increased 100% in salt-stressed plants treated with supplemental Mn to about 32% of the level of nonsalinized controls. The optimum solution culture concentration was 2.0 mmol m−3, and the optimum concentration applied to the leaves was 5.0 mol m−3. Supplemental Mn did not affect the growth of control plants. Further experiments showed that supplemental Mn increased Mn concentrations and uptake to the shoot. Supplemental Mn increased the relative growth rate of salt-stressed plants and this increase was attributed to an increase in the net assimilation rate; there were no significant effects on the leaf area ratio. Supplemental Mn also increased the net photosynthetic rate of salt-stressed plants. The data support the hypothesis that salinity induced a Mn deficiency in the shoot, which partially reduced photosynthetic rates and growth.  相似文献   

3.
A growth analysis was made of ultraviolet-B (UV-B)-sensitive (Poinsett) and insensitive (Ashley) cultivars of Cucuumis satives L. grown in growth chambers at 600 μmol m−2 s−1 of photosynthetic photon flux (PPF) provided by red- and far-red-deficient metal halide (MH) or blue- and UV-A-deficient high pressure sodium/deluxe f HPS/DX) lamps. Plants were irradiated 6 h daiiy with 0.2 f-UV-B) or 18.2 C+UV-B) kJ m−2 day−1 of biologically effective UV-B for 8 or 15 days from time of seeding. In general, plants given supplemental UV-B for 15 days showed lower leaf area ratio (LARs, and higher specific leaf mass (SLM) mean relative growth rate (MRGR) and net assimilation rate (NAR) than that of control plants, but they showed no difference in leaf mass ratio (LMR), Plants grown under HPS/DX lamps vs MH lamps showed higher SLM and NAR. lower LAR and LMR. hut no difference in MRGR. LMR was the only growth parameter affected by cultivar: at 15 days, it was slightly greater in Poinsett than in Ashley. There were no interactive effects of UV-B. PPF source or cultivar on any of the growth parameters determined, indicating that the choice of either HPS/DX or MH lamps should not affect growth response to UV-B radiation. This was true even though leaves of UV-B-irradiated plants grown under HPS/DX lamps have been shown to have greater chlorosis than those grown under MH lamps.  相似文献   

4.
Abstract. Plantago maritima L. was grown at three levels of salinity, 50, 200, 350 mol m−3 NaCl, and the effects on growth, ion content and photosynthetic capacity were studied. Shoot and root dry weight, leaf production and leaf length were all substantially reduced in plants grown at high salinity. Total leaf area of plants grown at 350 mol m−3 NaCl was only 20% of that in plants at low salinity. Both the Na+ and K+ content of leaves and roots increased with external salinity. There was no change in the Na+/K+ ratio of leaves or roots at different salinity levels. Despite the large reductions in growth and high accumulation of Na+ ions, leaf photosynthetic rate was only slightly reduced by salinity stress. The reduction in photosynthesis was not caused by reduced biochemical capacity as judged by photosynthetic response to intercellular CO2 and by ribulose-1,5-bisphosphate carboxylase activity, but was due to reduced leaf conductance and low intercellular CO2 concentration. The increased stomatal limitation of photosynthesis resulted in higher water-use efficiency of plants grown at high salinity.  相似文献   

5.
Abstract. Xylem sap was collected from individual leaves of intact transpiring lupin plants exposed to increasing concentrations of NaCl by applying pneumatic pressure to the roots. Concentrations of Na+ and Cl in the xylem sap increased linearly with increases in the external NaCl concentration, averaging about 10% of the external concentration. Concentrations of K+ and NO3, the other major inorganic ions in the sap, were constant at about 2.5 and 1.5 mol m−3, respectively. There was no preferential direction of Na + or Cl to either young or old leaves: leaves of all ages received xylem sap having similar concentrations of Na+ and Cl, and transpiration rates (per unit leaf area) were also similar for all leaves. Plants exposed to 120–160 mol m−3 NaCl rapidly developed injury of oldest leaves; when this occurred, the Na+ concentration in the leaflet midrib sap had increased to about 40 mol m−3 and the total solute concentration to 130 osmol m−3. This suggests that uptake of salts from the transpiration stream had fallen behind the rate of delivery to the leaf and that salts were building up in the apoplast.  相似文献   

6.
Abstract. Three parameters influencing the capacity for carbon accumulation, i.e. photosynthesis, respiration, and leaf extension growth, were studied in Beta vulgaris L. (sugar beet) cultured in nutrient solution containing 0.5 to 500 mol m−3 NaCl. Leaf extension growth was the parameter most sensitive to salinity: the initial rate of leaf extension and final leaf length each declined linearly with increase in external NaCl concentration. Photosynthetic O2 evolution of thin leaf slices did not decline until salinity levels reached 350 to 500 mol m−3 NaCl, while respiratory O2 consumption was not affected by salinity throughout the range. The results suggest that the influence of salinity on the capacity for carbon accumulation in B. vulgaris occurs primarily through reduction in the area of photosynthetic surface.  相似文献   

7.
Abstract. Nitellopsis cells grown in fresh water have a relatively low cytoplasmic Na+ (11 mol m−3) and high cytoplasmic K+ (90 mol m−3) content. A 30-min treatment with 100 mol m−3 external NaCl resulted in a high [Na+]c (90 mol m−3) and a low [K+]c (33 mol m−3), Subsequent addition of external Ca2+ (10 mol m−3) prevented Na+ influx and then [Na+]c decreased slowly. Changes in [K+]c were opposite to [Na+]c. During the recovery time vacuolar Na+ increased, while vacuolar K+ decreased. Since all these processes proceeded also under ice-cold conditions, the restoration of original cytoplasmic ion compositions is suggested to be a passive nature. The notion that the passive movement of ions across the tonoplast can act as an effective and economic mechanism of salt tolerance under transient or under mild salt stress conditions is discussed.  相似文献   

8.
Abstract. Phloem sap was collected from petioles of growing and fully expanded leaves of lupins exposed to 0–150 mol m−3 [NaCl]ext, for various periods of time. Sap bled from growing leaves only after the turgor of the shoot was raised by applying pneumatic pressure to the root. Increased pressure was also needed to obtain sap from fully expanded leaves of plants at high [NaCl]ext. Exposure to NaCl caused a rapid rise in the Na+ concentration in phloem sap to high levels. The Na+ concentration reached 20 mol m−3 within a day of exposure and reached a plateau of about 60 mol m−3 in plants at 50–150 mol m−3 [NaCl]ext, after a week. There was a slower, smaller increase in the Cl concentration. K+ concentrations in phloem sap were not affected by [NaCl]ext. Cl concentrations in phloem sap collected from growing leaves were similar to those from old leaves while Na+ concentrations were somewhat increased, suggesting that there was no reduction in the salt content of the phloem sap while it flowed within the shoot to the apex. Calculations of ion fluxes in xylem and phloem sap indicated that Na+ and Cl fluxes in the phloem from leaves of plants at high NaCl could be equal to those in the xylem. This prediction was borne out by observations that Na+ and Cl concentrations in recently expanded leaves remained constant.  相似文献   

9.
Abstract. Growth rates and levels of minerals, Na+, K+, Mg++, Ca++, and water were measured in dicotyledonous halophytes grown along a salinity gradient from fresh water to 720 mol m−3 NaCl in a controlled environment greenhouse. Ten test species from the families Chenopodiaceae, Aizoaceae, and Batidaceae exhibited growth stimulation by 180 mol m−3 NaCl and were classified as euhalophytes. Ten others from the families Chenopodiaceae, Aizoaceae, Asteraceae, Brassicaceae, Polygonaceae, Boraginaceae, Malvaceae, and Plumbaginaceae showed their best growth on fresh water and were classified miohalophytes. Salt, and particularly sodium, accumulated in all halophytes but to a significantly greater extent among euhalophytes than miohalophytes. The water content of most species increased when grown on 180 mol m−3 NaCl compared to fresh water; but at higher salinities some of the species underwent dehydration. Dehydration of the succulent S. europaca was not coupled to a proportional decrease in growth. Water content and cation accumulation in euhalophytes appeared to be coordinated to produce a constant osmotic potential gradient within the shoot tissues relative to the external salinity. In contrast, miohalophytes did not appear to regulate osmotic potential as closely as euhalophytes.  相似文献   

10.
Seedlings of three species native to central North America, a C3 tree, Populus tremuloides Michx., a C3 grass, Agropyron smithii Rybd., and a C4 grass, Bouteloua curtipendula Michx., were grown in all eight combinations of two levels each of CO2, O3 and nitrogen (N) for 58 days in a controlled environment. Treatment levels consisted of 360 or 674 μmol mol-1 CO2, 3 or 92 nmol mol-1 O3, and 0.5 or 6.0 m M N. In situ photosynthesis and relative growth rate (RGR) and its determinants were obtained at each of three sequential harvests, and leaf dark respiration was measured at the second and third harvests. In all three species, plants grown in high N had significantly greater whole-plant mass, RGR and photosynthesis than plants grown in low N. Within a N treatment, elevated CO2 did not significantly enhance any of these parameters nor did it affect leaf respiration. However, plants of all three species grown in elevated CO2 had lower stomatal conductance compared to ambient CO2-exposed plants. Seedlings of P. tremuloides (in both N treatments) and B. curtipendula (in high N) had significant ozone-induced reductions in whole-plant mass and RGR in ambient but not under elevated CO2. This negative O3 impact on RGR in ambient CO2 was related to increased leaf dark respiration, decreased photosynthesis and/or decreased leaf area ratio, none of which were noted in high O3 treatments in the elevated CO2 environment. In contrast, A. smithii was marginally negatively affected by high O3.  相似文献   

11.
Spinach plants ( Spinacia oleracea L. cv. Subito) were grown in a complete nutrient solution under ample light intensity (14 h day−1 at 660 μmol m−2 s−1) before being transferred either to a minus-N solution (experiment 1), or to limiting light conditions (6 h day−1 at 220 μmol m−2 s−1; experiment 2). Shoot growth in experiment 1 decreased significantly from 0.24 day−1 to 0.07 day−1 after the fourth day of transfer. Root relative growth rate increased after 1 day from 0.25 to 0.31 day−1, but decreased on the fifth day after transfer to 0.11 day−1. Shoot growth in experiment 2 decreased significantly from 0.25 to 0.17 day−1 after the fourth day of transfer, while root growth decreased to half of its original level (0.25 day−1) already on the second day. Growth substrate levels in the plants (free sugars, free amino acids) and starch levels depended on the plant age, the moment in the diurnal cycle, and the imposed treatment. Fluctuations in shoot growth or root growth resulting from the light or N limitation could not be explained by a correspondent increase or decrease in the levels of growth substrates. The hypotheses underlying the functional equilibrium theory, assuming shoot and root growth to be controlled by N- and C-containing substrates respectively, and several other growth and partitioning models are therefore questioned. A neglect of the osmotic role of the free sugars in these models might be the explanation for this.  相似文献   

12.
Salt stress in cultured rice cells: effects of proline and abscisic acid   总被引:4,自引:0,他引:4  
Abstract. The presence of 1 and 10 mol m−3 proline in media containing 100 and 200 mol m−3 of NaCl, had little effect on the growth of salt-adapted callus of rice. However, in such callus proline accumulation was stimulated by 10 mol m−3 proline in the presence of 100 mol m−3 NaCl. On the other hand, with 100 mol m−3 NaCl, both 1 and 10 mol m−3 proline significantly increased both the growth and proline content of salt-unadapted callus. On replacing NaCl with KCl (100 and 200 mol m−3), growth of saltadapted as well as unadapted callus was inhibited, but the presence of 10 mol m−3 proline had an ameliorating effect. Abscisic acid (ABA) supressed the growth of both salt-adapted and unadapted callus of rice in the absence of salt stress. ABA inhibited the growth of callus adapted to and grown in 100 and 200 mol m−3 of NaCl or when it was replaced by equimolar concentrations of KCl. Growth of 100 mol m−3 NaCl adapted cells was inhibited when they were transferred to a medium containing 200 mol m−3 of NaCl, but in the presence of ABA it was stimulated. ABA increased the growth of unadapted cells when subjected to different salts. Also, ABA accelerated the adaptation of cells exposed to salt but not to water deficits imposed by nonionic solutes.  相似文献   

13.
Light-saturated CO2-assimilation rates of 19 vascular plant species were measured on a tundra slope in the foothills of the Brooks Range, Alaska. Maximum assimilation capacities on a leaf area basis ranged from 20.3 μmol m−2 s−1 for the forb, Bistorta plumosa , to 6.0 μmol m−2 s−1 for the evergreen, Empetrum hermaphroditicum . Graminoids, deciduous shrubs, and forbs fell within a similar range of maximum photosynthetic rates on a leaf area basis. Evergreens had the lowest rates. On a leaf weight basis, maximum assimilation rates were greatest for forbs, followed by deciduous shrubs, graminoids, and evergreens. Rates of evergreens were less than half those of all other growth forms. Cassiope tetragona had the lowest rates per unit leaf weight of any species tested; mean maximum rates of C. tetragona were only 14% of those of B. plumosa , the species with the highest rates. When the data were subjected to canonical analysis, only a partial correspondence was found between species growth form and photosynthetic characteristics.  相似文献   

14.
Plants of barley ( Hordeum vulgare L. cv. Salve) were grown with 6.5–35% relative increase of K+ supply per day (RKR) using a special computer-controlled culture unit. After a few days on the culture solution the plants adapted their relative growth rate (RGR) to the rate of nutrient supply. The roots of the plants remained in a low salt status irrespective of the rate of nutrient supply, whereas the concentration of K+ in shoots increased with RKR. Both Vmax and Km for K+(86Rb) influx increased with RKR. It is concluded that with a continuous and stable K+ stress, the K+ uptake system is adjusted to provide an effective K+ uptake at each given RKR. Allosteric regulation of K+ influx does not occur and efflux of K+ is very small.  相似文献   

15.
Development of salt-tolerant genotypes is central both to remediation of salinity-affected land and to meet increasing global food demand, which has been driving expansion of cropping into marginal areas. The bottleneck of any breeding programme is the lack of a reliable screening technique. This study tested the hypothesis that the ability of plants to retain K+ under saline conditions is central to their salt tolerance. Using seven barley cultivars contrasting in salt tolerance (CM72, Numar, ZUG293, ZUG95, Franklin, Gairdner, ZUG403), a comprehensive study was undertaken of whole-plant (growth rate, biomass, net CO2 assimilation, chlorophyll fluorescence, root and leaf elemental and water content) and cellular (net fluxes of H+, K+, Na+ and Ca2+) responses to various concentrations of NaCl (20–320 m m ). Na+ selective microelectrodes were found to be unsuitable for screening purposes because of non-ideal selectivity of the commercially available Na+ LIX. At the same time, our results show very strong negative correlation between the magnitude of K+ efflux from the root and salt tolerance of a particular cultivar. K+ efflux from the mature root zone of intact 3-day-old seedlings following 40 min pretreatment with 80 m m NaCl was found to be a reliable screening indicator for salinity tolerance in barley. As a faster and more cost-effective alternative to microelectrode measurements, a procedure was developed enabling rapid screening of large numbers of seedlings, based on amount of K+ leaked from plant roots after exposure to NaCl.  相似文献   

16.
Abstract. Seedlings of Phaseolus vulgaris were exposed to solutions containing Cd2+ in the range 0 to 1 molm−3. Ethylene formation started following 3 h of exposure to 10−2, 10−1 and 1 mol m−3 Cd2+, peaked at 18 h and returned to a relatively low rate after 24 h. Cadmium-induced ethylene formation depended on the formation of 1-aminocyclopropane-1-carboxylic acid (ACC). Aminoethoxyvinylglycine (AVG, 0.1 mol m−3) inhibited ACC accumulation and ethylene production during exposure to 0.2 mol m−3 Cd2+.
Activity of soluble and ionically-bound peroxidase increased after 18 h of exposure to Cd2+ concentrations above 10−3 mol m−3 due to an increase in activity of cathodic isoperoxidases. Stimulation of soluble and ionically-bound peroxidase by 0.2 mol m−3 Cd2+ was reduced in the presence of 0.1 mol m−3 AVG.
Accumulation of soluble and insoluble ('ligninlike') phenolics was found in plants exposed to Cd2+ (10−2 mol m−3 or above) in the presence or absence of AVG. Deposition of insoluble (autofluorescing) material occurred in cell walls around vessels and was associated with reduced expansion and water content of leaves.  相似文献   

17.
Abstract. The tonoplasts of internodal cells of Nitellopsis were removed by perfusing the vacuoles with media containing a Ca2 chelator, EGTA. Treatment of tonoplast-free cells with 100 mol m3 NaCl induces a large membrane depolarization, a drastic decrease in the membrane resistance and an increase in Na+ influx. These events are identical to those that occur in intact cells subjected to high NaCl. These responses to NaCl are prevented if 10 mol m3 Ca2+ is supplied together with 100 mol m3 NaCl. The protective effect of Ca2+ is evident only when the intracellular ATP concentration exceeds 0.1 mol m3 and does not occur full when the intracellular ATP is removed. AMP at concentrations greater than 0.5 mol m3 or 0.25 mol m3 AMPPNP can replace ATP. It is concluded that ATP does not act as an energy source nor as a substrate for protein phosphorylation. ATP seems to exert its effects as a coeffector with Ca2+ in regulating the Na+ permeability of the plasma membrane.  相似文献   

18.
Abstract. When plants of rice ( Oryza saliva L.) are subjected to mildly saline (50mol m−3 NaCl) conditions, the leaves show symptoms of water deficit, even though ion accumulation has been more than sufficient to adjust to the decrease in external water potential. After a few days of exposure to salt, there is a negative correlation, in a population of leaves, between the leaf water concentration (g water per g dry weight) and their sodium concentration (mmol Na per g dry weight). Ion concentrations in the cell walls and the cytoplasm of cells of plants grown in low salinity were measured by X-ray microanalysis. The NaCl concentration in solution in the apoplast was calculated to be around 600mol m−3 in leaves of plants whose roots were exposed to only 50 mol m−3 NaCl. This constitutes strong evidence that an important factor in salt damage in rice is dehydration due to the extracellular accumulation of salt as suggested in the Oertli hypothesis. The implication, that changes in tissue ion concentration and solute potentials equivalent to the external medium is not evidence of plant osmotic adjustment to salinity, is discussed.  相似文献   

19.
Root zone calcium modulates the response of potato plants to heat stress   总被引:1,自引:0,他引:1  
Potato plant growth and development are known to be severely impacted by heat stress. Here plants grown in a chemically inert medium of 1 : 1 quartzite : perlite (v : v) were subjected to either 35/25°C (stress) or 20/15°C (control) day/night air temperatures and four concentrations of root zone calcium (5, 25, 125 and 600 µ M Ca) for 3 weeks. We report for the first time that potato plant growth under heat stress can persist at specific levels of Ca2+ in the root zone and that the Ca2+ level required for growth under heat stress exceeds that required for growth under normal temperatures. We also provide strong, initial evidence that the ability of high Ca2+ levels to mitigate heat stress effects results from shifts in meristematic activity. Total foliar mass and leaf area were essentially unaffected by Ca2+ level under control temperatures. Under heat stress, leaf area was reduced to about 5% of the control at 5 and 25 µ M Ca but to only 70% of the control at 125 and 600 µ M Ca. Likewise, total foliar mass was reduced under heat stress to about 30% of the control at 5 and 25 µ M Ca but total foliar mass was greater under heat stress than control conditions at 125 and 600 µ M Ca. This increase at higher Ca2+ concentrations was due primarily to axillary shoot growth. Anatomical studies of leaves grown under heat stress show that cell expansion was impaired by heat stress and this impairment was overcome by increasing root zone calcium levels. These results provide insight into the mechanism by which root zone Ca2+ may modulate plant response to heat stress.  相似文献   

20.
Long‐term salt effects on plant growth have often been related to direct ion toxicity due to the accumulation of high ion concentrations in plant tissue. This work examines the relative importance of endogenous ABA, as well as Na+ and Cl toxicity, in the inhibition of leaf growth and photosynthesis, in bean plants grown at 1, 25, 50 and 75 m M NaCl until the fruit‐bearing stage. All salt‐treated plants showed very high leaf Cl concentrations, with little difference between plants exposed to 50 or 75 m M NaCl. The 25 and 50 mM salt‐treated plants were able to successfully exclude Na+ from their leaves, and only suffered an initial decline in the rate of leaf growth. Plants exposed to 75 m M NaCl showed an increase in Na+ leaf concentrations with an accompanying decrease in growth and photosynthesis as salt exposure progressed. A high correlation was found between leaf Na+ and leaf growth. Leaf ABA significantly increased with salt supply, and was highly correlated with both leaf Na+ and leaf growth. Our results suggest that in bean plants under long‐term salt stress, leaf ABA may participate in the regulation of leaf growth, and leaf Na+ would be at least partly responsible for increased ABA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号