首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Cultured cerebellar granule neurons maintained in medium containing 26 mM potassium (high K+ or HK+) undergo cell death when switched to medium with 5 mM potassium (low K+ or LK+). This low K(+)-induced cell death has typical features of apoptosis. The intracellular signaling pathway of low K(+)-induced apoptosis has been investigated. 2. Cerebellar granule neurons become committed to undergo apoptosis between 2 and 5 h after K+ deprivation, judging from the inability of high K+ to rescue them after this time. Although the levels of most mRNAs decrease markedly concomitant with commitment, expression of c-jun mRNA increases 2-3 h after K+ deprivation. Among the family of caspases, a caspase-3-like protease is activated within 4 h of lowering the K+ concentration. A caspase-1-like protease is also activated within 2 h of K+ deprivation. 3. Inhibition of phosphatidylinositol 3-kinase (PI3-K) activity by LY294002 or wortmannin also induces apoptosis in cerebellar granule neurons. The intracellular signaling pathway of LY294002-induced apoptosis has been investigated. The activity of c-Jun N-terminal kinase (JNK) increases 8 h after addition of LY294002 to high K+ medium or low K+ medium containing BDNF. Expression of c-Jun protein also increases almost simultaneously. 4. The low K(+)-induced apoptosis of cerebellar granule neurons is prevented by high K+ (membrane depolarization by high K+), BDNF, IGF-1, bFGF or cAMP. The intracellular signaling pathways by which these agents prevent low K(+)-induced apoptosis have been investigated. Agents other than cAMP prevent apoptosis through PI3-K and a Ser/Thr kinase, Akt/PKB. The survival-promoting effect of cAMP does not depend on the PI3-K-Akt pathway.  相似文献   

2.
17Beta-estradiol (E2) induces proliferation and c-fos gene expression in MCF-7 cells and both responses are partially blocked by wortmannin and LY294002 which are inhibitors of phosphatidylinositol-3-kinase (PI3-K). Analysis of the c-fos gene promoter shows that the effects of wortmannin and LY294002 are associated with inhibition of E2-induced activation through the serum response factor (SRF) motif within the proximal serum response element at -325 and -296. E2 activates constructs containing multiple copies of the SRF (pSRF) and a GAL4-SRF fusion protein; these responses are accompanied by PI3-K-dependent phosphorylation of Akt and inhibited by wortmannin/LY294002, the antiestrogen ICI 182780, but not by the mitogen-activated protein kinase kinase (MAPKK) inhibitor PD98059. Using a series of kinase inhibitors and dominant negative kinase expression plasmids, it was shown that the non-genomic activation of SRF by E2 was associated with src-ras-PI3-K pathway, thus, demonstrating hormonal activation of the SRE through src-ras activation of both PI3-K- and MAPK-dependent signaling pathways.  相似文献   

3.
The extracellular signal-regulated kinase (ERK) and Akt have been reported to be activated by ischemia/reperfusion in vivo. However, the signaling pathways involved in activation of these kinases and their potential roles were not fully understood in the postischemic kidney. In the present study, we observed that these kinases are activated by hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion, in opossum kidney (OK) cells and elucidated the signaling pathways of these kinases. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-12h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of ERK upstream MAPK/ERK kinase (MEK), but not by LY294002, a specific inhibitor of phosphoinositide 3-kinase (PI3K), whereas Akt activation was blocked by LY294002, but not by U0126. Inhibitors of epidermal growth factor receptor (EGFR) (AG 1478), Ras and Raf, as well as antioxidants inhibited activation of ERK and Akt, while the Src inhibitor PP2 had no effect. PI3K/Akt activation was shown to be associated with up-regulation of X chromosome-linked inhibitor of apoptosis (XIAP), but not survivin. Reoxygenation following 4-h hypoxia-stimulated cell proliferation, which was dependent on ERK and Akt activation and was also inhibited by antioxidants and AG 1478. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt/XIAP survival signaling pathways through the reactive oxygen species-dependent EGFR/Ras/Raf cascade. Activation of these kinases may be involved in the repair process during ischemia/reperfusion.  相似文献   

4.
Stimulation of osteoblast survival signals may be an important mechanism of regulating bone anabolism. Protein kinase B (PKB/Akt), a serine-threonine protein kinase, is a critical regulator of normal cell growth, cell cycle progression, and cell survival. In this study we have investigated the signaling pathways activated by growth factors PDGF-BB, EGF, and FGF-2 and determined whether PDGF-BB, EGF, and FGF-2 activated Akt in human or mouse osteoblastic cells. The results demonstrated that both ERK1 and ERK2 were activated by FGF-2 and PDGF-BB. Activation of ERK1 and ERK2 by PDGF-BB and FGF-2 was inhibited by PD 098059 (100 microM), a specific inhibitor of MEK. Wortmannin (500 nM), a specific inhibitor of phosphatidylinositol 3-kinase ( PI 3-K), inhibited the activation of ERK1 and ERK2 by PDGF-BB but not by FGF-2 suggesting that PI 3-K mediated the activation of ERK MAPK pathway by PDGF-BB but not by FGF-2. Rapamycin, an inhibitor of p70 S6 protein kinase and a downstream target of ERK1/2 and PI 3-K, did not affect the activation of ERK1 and ERK2 by the growth factors. Furthermore, our results demonstrated that Akt, a downstream target of PI 3-K, was activated by PDGF-BB but not by FGF-2. Akt activation by PDGF-BB was inhibited by PI 3-kinase inhibitor LY294002. Rapamycin had no effect on Akt activation. Epidermal growth factor (EGF) also activated Akt in osteoblastic cells which was inhibited by LY294002 but not by rapamycin. Taken together, our data for the first time revealed that the activation of ERK1/2 by PDGF-BB is mediated by PI 3-K, and secondly, Akt is activated by PDGF-BB and EGF but not by FGF-2 in human and mouse osteoblastic cells. These results are of critical importance in understanding the role of these growth factors in apoptosis and cell survival. PDGF-BB and EGF but not FGF-2 may stimulate osteoblast cell survival.  相似文献   

5.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs.  相似文献   

6.
Neuregulins (NRGs), a large family of transmembrane polypeptide growth factors, mediate various cellular responses depending on the cell type and receptor expression. We previously showed that NRG mediates survival of PC12-ErbB4 cells from apoptosis induced by serum deprivation or tumor necrosis factor-alpha treatment. In the present study we show that NRG induces a significant protective effect from H(2)O(2)-induced death. This effect of NRG is mediated by the phosphatidylinositol 3-kinase (PI3K)-signaling pathway since NRG failed to rescue cells from H(2)O(2) insult in the presence of the PI3K inhibitor, LY294002. Furthermore, the downstream effector of PI3K, protein kinase B/AKT, is activated by NRG in the presence of H(2)O(2), and protein kinase B/AKT activation is inhibited by LY294002. In addition, our results demonstrate that reactive oxygen species (ROS) elevation induced by H(2)O(2) is inhibited by NRG. LY294002, which blocks NRG-mediated rescue, increases ROS levels. Moreover, both H(2)O(2)-induced ROS elevation and cell death are reduced by expression of activated PI3K. These results suggest that PI3K-dependent pathways may regulate toxic levels of ROS generated by oxidative stress.  相似文献   

7.
Angiotensin II, a hypertrophic/anti-apoptotic hormone, utilizes reactive oxygen species (ROS) as growth-related signaling molecules in vascular smooth muscle cells (VSMCs). Recently, the cell survival protein kinase Akt/protein kinase B (PKB) was proposed to be involved in protein synthesis. Here we show that angiotensin II causes rapid phosphorylation of Akt/PKB (6- +/- 0.4-fold increase). Exogenous H(2)O(2) (50-200 microM) also stimulates Akt/PKB phosphorylation (maximal 8- +/- 0.2-fold increase), suggesting that Akt/PKB activation is redox-sensitive. Both angiotensin II and H(2)O(2) stimulation of Akt/PKB are abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitors wortmannin and LY294002 (2(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), suggesting that PI3-K is an upstream mediator of Akt/PKB activation in VSMCs. Furthermore, diphenylene iodonium, an inhibitor of flavin-containing oxidases, or overexpression of catalase to block angiotensin II-induced intracellular H(2)O(2) production significantly inhibits angiotensin II-induced Akt/PKB phosphorylation, indicating a role for ROS in agonist-induced Akt/PKB activation. In VSMCs infected with dominant-negative Akt/PKB, angiotensin II-stimulated [(3)H]leucine incorporation is attenuated. Thus, our studies indicate that Akt/PKB is part of the remarkable spectrum of angiotensin II signaling pathways and provide insight into the highly organized signaling mechanisms coordinated by ROS, which mediate the hypertrophic response to angiotensin II in VSMCs.  相似文献   

8.
Activation of Lyn, a Src-related nonreceptor tyrosine kinase, in trophoblast cells is associated with trophoblast giant cell differentiation. The purpose of the present work was to use Lyn as a tool to identify signaling pathways regulating the endocrine differentiation of trophoblast cells. The Src homology 3 domain of Lyn was shown to display differentiation-dependent associations with other regulatory proteins, including phosphatidylinositol 3-kinase (PI3-K). PI3-K activation was dependent upon trophoblast giant cell differentiation. The downstream mediator of PI3-K, Akt/protein kinase B, also exhibited differentiation-dependent activation. Lyn is a potential regulator of the PI3-K/Akt signaling pathway, as are receptor tyrosine kinases. Protein tyrosine kinase profiling was used to identify two candidate regulators of the PI3-K/Akt pathway, fibroblast growth factor receptor-1 and Sky. At least part of the activation of Akt in differentiating trophoblast giant cells involves an autocrine growth arrest-specific-6-Sky signaling pathway. Inhibition of PI3-K activities via treatment with LY294002 disrupted Akt activation and interfered with the endocrine differentiation of trophoblast giant cells. In summary, activation of the PI3-K/Akt signaling pathway regulates the development of the differentiated trophoblast giant cell phenotype.  相似文献   

9.
Our previous studies using differential mRNA display have shown that interferon-gamma-inducible GTPase (IGTP), was up-regulated in coxsackievirus B3 (CVB3)-infected mouse hearts. In order to explore the effect of IGTP expression on CVB3-induced pathogenesis, we have established a doxycycline-inducible Tet-On HeLa cell line overexpressing IGTP and have analyzed activation of several signaling molecules that are involved in cell survival and death pathways. We found that following IGTP overexpression, protein kinase B/Akt was strongly activated through phosphorylation, which leads to phosphorylation of glycogen synthase kinase-3 (GSK-3). Furthermore, in the presence of CVB3 infection, the intensity of the phosphorylation of Akt was further enhanced and associated with a delayed activation of caspase-9 and caspase-3. These data indicate that IGTP expression appears to confer cell survival in CVB3-infected cells, which was confirmed by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt cell viability assay. However, the ability of IGTP to induce phosphorylation of Akt and to promote cell survival was attenuated by the phosphotidylinositol-3 kinase (PI3-K) inhibitor LY294002. Transient transfection of the cells with a dominant negative Akt construct followed by doxycycline induction and CVB3 infection reversed Akt phosphorylation to basal levels and returned caspase-3 activity to levels similar to those when the PI3-K inhibitor LY294002 was added. Moreover, IGTP expression inhibited viral replication and delayed CVB3-induced cleavage of eukaryotic translation initiation factor 4G, indicating that IGTP-mediated cell survival relies on not only the activation of PI3-K/Akt, inactivation of GSK-3 and suppression of caspase-9 and caspase-3 but also the inhibition of viral replication.  相似文献   

10.
Endothelial nitric-oxide synthase (eNOS) is an important component of vascular homeostasis. During vascular disease, endothelial cells are exposed to excess reactive oxygen species that can alter cellular phenotype by inducing various signaling pathways. In the current study, we examined the implications of H(2)O(2)-induced signaling for eNOS phosphorylation status and activity in porcine aortic endothelial cells. We found that H(2)O(2) treatment enhanced eNOS activity and NO bioactivity as determined by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline and cellular cGMP content. Concomitant with eNOS activation, H(2)O(2) also activated Akt, increased eNOS phosphorylation at Ser-1177, and decreased eNOS phosphorylation at Thr-495. H(2)O(2)-induced promotion of eNOS activity and modulation of the eNOS phosphorylation status at Ser-1177 and Thr-495 were significantly attenuated by selective inhibitors of Src kinase, the ErbB receptor family, and phosphoinositide 3-kinase (PI 3-K). We found that Akt activation, eNOS Ser-1177 phosphorylation, and eNOS activation by H(2)O(2) were calcium-dependent, whereas eNOS dephosphorylation at Thr-495 was not, suggesting a branch point in the signaling cascade downstream from PI 3-K. Consistent with this, overexpression of a dominant negative isoform of Akt inhibited H(2)O(2)-induced phosphorylation of eNOS at Ser-1177 but not dephosphorylation of eNOS at Thr-495. Together, these data indicate that H(2)O(2) promotes calcium-dependent eNOS activity through a coordinated change in the phosphorylation status of the enzyme mediated by Src- and ErbB receptor-dependent PI 3-K activation. In turn, PI 3-K mediates eNOS Ser-1177 phosphorylation via a calcium- and Akt-dependent pathway, whereas eNOS Thr-495 dephosphorylation does not involve calcium or Akt. This response may represent an attempt by endothelial cells to maintain NO bioactivity under conditions of enhanced oxidative stress.  相似文献   

11.
In our previous study, bradykinin (BK) exerts its mitogenic effect through Ras/Raf/MEK/MAPK pathway in vascular smooth muscle cells (VSMCs). In addition to this pathway, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3-K) have been implicated in linking a variety of G-protein coupled receptors to MAPK cascades. Here, we investigated whether these different mechanisms participating in BK-induced activation of p42/p44 MAPK and cell proliferation in VSMCs. We initially observed that BK- and EGF-dependent activation of Src, EGFR, Akt, and p42/p44 MAPK and [3H]thymidine incorporation were mediated by Src and EGFR, because the Src inhibitor PP1 and EGFR kinase inhibitor AG1478 abrogated BK- and EGF-dependent effects. Inhibition of PI3-K by LY294002 attenuated BK-induced Akt and p42/p44 MAPK phosphorylation and [3H]thymidine incorporation, but had no effect on EGFR phosphorylation, suggesting that EGFR may be an upstream component of PI3-K/Akt and MAPK in these responses. This hypothesis was supported by the tranfection with dominant negative plasmids of p85 and Akt which significantly attenuated BK-induced Akt and p42/p44 MAPK phosphorylation. Pretreatment with U0126 (a MEK1/2 inhibitor) attenuated the p42/p44 MAPK phosphorylation and [3H]thymidine incorporation stimulated by BK, but had no effect on Akt activation. Moreover, BK-induced transactivation of EGFR and cell proliferation was blocked by matrix metalloproteinase inhibitor GM6001. These results suggest that, in VSMCs, the mechanism of BK-stimulated activation of p42/p44 MAPK and cell proliferation was mediated, at least in part, through activation of Src family kinases, EGFR transactivation, and PI3-K/Akt.  相似文献   

12.
13.
14.
Bovine carotid artery endothelial (BAE) cells are resistant to tumor necrosis factor-alpha (TNF), like most other cells. We examined if mitogen-activated protein (MAP) kinase and phosphatidylinositol-3 (PI3) kinase/Akt pathways are involved in this effect. In BAE cells, TNF activates MAP kinase in a MAP kinase kinase 1 (MEK1) manner and Akt in PI3-kinase-dependent manner. Pretreatment with either the MEK1 inhibitor U0126 or PI3-kinase inhibitor LY294002 sensitized BAE cells to TNF-induced apoptosis. Neither U0126 nor LY294002 pretreatment affected TNF-induced activation of NF-kappaB, suggesting that the MAP kinase or PI3-kinase/Akt-mediated anti-apoptotic effect induced by TNF was not relevant to NF-kappaB activation. Both MAP kinase and PI3-kinase/Akt -mediated signaling could prevent cytochrome c release and mitochondrial transmembrane potential (Deltapsi) decrease. PI3-kinase/Akt signaling attenuated caspase-8 activity, whereas MAP kinase signaling impaired caspase-9 activity. These results suggest that TNF-induced MAP kinase and PI3-kinase/Akt signaling play important roles in protecting BAE cells from TNF cytotoxicity.  相似文献   

15.
Cellular response to estrogen is mediated both by estrogen receptor (ER) binding to estrogen response element (ERE) and by non-nuclear actions like activation of signal transducing pathways. The main aims are to study if PI3K/Akt signaling pathway can be activated by 17beta-estradiol (E2) via non-nuclear action and to investigate the relationship of the action of E2 and ER in endometrial cancer cells expressing with different status of ER. The levels of phosphorylated Akt (Ser473) (P-Akt) and total Akt were examined by western blot and Akt kinase activity was measured in cells after stimulation with 1 microM E2 at different time points. Inhibitory role of LY294002 on activation of Akt induced by E2 and its estrogen antagonist, ICI182780 were also tested. P-Akt/Akt was used as a measure of activation of Akt. We found that maximum P-Akt/Akt and Akt kinase activity took place at 30 min in Ishikawa cells and 15 min in HEC-1A cells and the activation persisted for at least 2 h after stimulation with 1 microM E2. The activation of Akt elicited gradually with increasing doses of E2. PI3K inhibitor, LY294002, stopped the activating Akt in a dose-dependent manner and 50 microM LY294002 completely blocked the activation of Akt induced by E2. ICI182780 could block the activation of PI3K/Akt in ER-positive Ishikawa cells but not in HEC-1A cells with poor-expressed ER. This study demonstrated that E2 is able to promptly activate PI3K/Akt signal pathway in Ishikawa cells in an ER-dependent manner and ER-independent in HEC-1A cells. Blockage of PI3K/Akt cascade may become a potential and effective way to control endometrial carcinoma, especially in ER-negative cancers, which show no response to endocrinal therapy.  相似文献   

16.
Insulin-like growth factor I (IGF-I) is a well-established mitogen in human breast cancer cells. We show here that human breast cancer MCF-7 cells, which were prevented from attaching to the substratum and were floating in medium, responded to IGF-I and initiated DNA synthesis. The addition of IGF-I to floating cells induced activation of protein kinase B (PKB)/Akt, as to cells attached to the substratum. In addition, mitogen-activated protein kinase (MAPK)/extracellular response kinase (ERK) and its upstream kinases, ERK kinase (MEK) and Raf-1, were activated by IGF-I in floating cells. While the IGF-I-induced activation of PKB/Akt was inhibited by PI3-K inhibitor LY294002 but not by MEK inhibitor PD98059, the activation of both MEK and ERK by IGF-I was inhibited by both. These findings suggest that the IGF-I signal that leads to stimulation of DNA synthesis of MCF-7 cells is transduced to ERK through PI3-K, only when they are anchorage-deficient.  相似文献   

17.
18.
Activated neutrophils play an important role in the pathogenesis of sepsis, glomerulonephritis, acute renal failure, and other inflammatory processes. The resolution of neutrophil-induced inflammation relies, in large part, on removal of apoptotic neutrophils. Neutrophils are constitutively committed to apoptosis, but inflammatory mediators, such as GM-CSF, slow neutrophil apoptosis by incompletely understood mechanisms. We addressed the hypothesis that GM-CSF delays neutrophil apoptosis by activation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI 3-kinase) pathways. GM-CSF (20 ng/ml) significantly inhibited neutrophil apoptosis (GM-CSF, 32 vs 65% of cells p < 0. 0001). GM-CSF activated the PI 3-kinase/Akt pathway as determined by phosphorylation of Akt and BAD. GM-CSF-dependent Akt and BAD phosphorylation was blocked by the PI 3-kinase inhibitor LY294002. A role for the PI 3-kinase/Akt pathway in GM-CSF-stimulated delay of apoptosis was indicated by the ability of LY294002 to attenuate apoptosis delay. GM-CSF-dependent inhibition of apoptosis was significantly attenuated by PD98059, an ERK pathway inhibitor. LY294002 and PD98059 did not produce additive inhibition of apoptosis delay. To determine whether PI 3-kinase and ERK are used by other ligands that delay neutrophil apoptosis, we examined the role of these pathways in IL-8-induced apoptosis delay. LY294002 blocked IL-8-dependent Akt phosphorylation. PD98059 and LY294002 significantly attenuated IL-8 delay of apoptosis. These results indicate IL-8 and GM-CSF act, in part, to delay neutrophil apoptosis by stimulating PI 3-kinase and ERK-dependent pathways.  相似文献   

19.
Cancer cells in which the PTEN lipid phosphatase gene is deleted have constitutively activated phosphatidylinositol 3-kinase (PI3K)-dependent signaling and require activation of this pathway for survival. In non-small cell lung cancer (NSCLC) cells, PI3K-dependent signaling is typically activated through mechanisms other than PTEN gene loss. The role of PI3K in the survival of cancer cells that express wild-type PTEN has not been defined. Here we provide evidence that H1299 NSCLC cells, which express wild-type PTEN, underwent proliferative arrest following treatment with an inhibitor of all isoforms of class I PI3K catalytic activity (LY294002) or overexpression of the PTEN lipid phosphatase. In contrast, overexpression of a dominant-negative mutant of the p85alpha regulatory subunit of PI3K (Deltap85) induced apoptosis. Whereas PTEN and Delta85 both inhibited activation of AKT/protein kinase B, only Deltap85 inhibited c-Jun NH2-terminal kinase (JNK) activity. Cotransfection of the constitutively active mutant Rac-1 (Val12), an upstream activator of JNK, abrogated Deltap85-induced lung cancer cell death, whereas constitutively active mutant mitogen-activated protein kinase kinase (MKK)-1 (R4F) did not. Furthermore, LY294002 induced apoptosis of MKK4-null but not wild-type mouse embryo fibroblasts. Therefore, we propose that, in the setting of wild-type PTEN, PI3K- and MKK4/JNK-dependent pathways cooperate to maintain cell survival.  相似文献   

20.
One of the plausible ways to prevent the reactive oxygen species (ROS)-mediated cellular injury is dietary or pharmaceutical augmentation of endogenous antioxidant defense capacity. In this study, we investigated the neuroprotective effect of fucoidan on H(2)O(2)-induced apoptosis in PC12 cells and the possible signaling pathways involved. The results showed that fucoidan inhibited the decrease of cell viability, scavenged ROS formation and reduced lactate dehydrogenase release in H(2)O(2)-induced PC12 cells. These changes were associated with an increase in superoxide dismutase and glutathione peroxidase activity, and reduction in malondialdehyde. In addition, fucoidan treatment inhibited apoptosis in H(2)O(2)-induced PC12 cells by increasing the Bcl-2/Bax ratio and decreasing active caspase-3 expression, as well as enhancing Akt phosphorylation (p-Akt). However, the protection of fucoidan on cell survival, p-Akt, the Bcl-2/Bax ratio and caspase-3 activity were abolished by pretreating with phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002. In consequence, fucoidan might protect the neurocytes against H(2)O(2)-induced apoptosis via reducing ROS levels and activating PI3K/Akt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号