首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Four paddy soils from Thailand were included in this investigation. The soils are described as marine alluvial, fresh water alluvial, hydromorphic alluvial and hydromorphic non-calcareous brown soil. The hydraulic conductivity of water saturated soil was determined on puddled samples, and soil moisture retention curves were recorded for unpuddled samples. In a pot experiment rice variety RD-1 was grown on the soils under flooded and unflooded conditions. For the soils studied a negative relationship was found between the hydraulic conductivity and the ability of the soil to retain water against a given suction. The grain yield was higher under flooded conditions, while among the various soils studied in this experiment grain yield increased with decreasing water content in the suction range studied and increasing hydraulic conductivity of the soils. Better root development facilitated by more favourable physical conditions in highly permeable soils could be the possible reason for the yield increase.  相似文献   

2.
Absorption of manganese by rice under flooded and unflooded conditions   总被引:1,自引:1,他引:0  
Summary Manganese absorption by rice plants under flooded and unflooded conditions, in an upland and a lowland soil was studied. Both under flooded and unflooded conditions the rate of manganese absorption was high during 3rd to 4th week and again during 9th to 10th week.Rice grown under flooded conditions, in lowland soil absorbed more manganese and showed higher dry matter accumulation than under unflooded conditions. However manganese absorption and dry matter accumulation in rice grown under flooded conditions in upland soil were lower than under unflooded conditions.Rice grown under flooded conditions may give lower yields than rice grown under unflooded conditions due to some factor or combination of factors one of which may possibly be a high soluble iron content which interferes with the absorption of manganese.  相似文献   

3.
Previous studies showed that 2-ethyl-3-methoxycarbonyl-1-(p-tolylcarbamoyl) isourea acts as a potent GA3-synergist in stimulating shoot growth of rice seedlings. Studies with several structurally related compounds show that the alkoxycarbonylcarbamoyl-isourea or -isothiourea skeleton is required for biological activity. Any chemical deletion from this skeleton causes complete loss of activity. From present and previous data it seems that alkoxycarbonylcarbamoyl-isourea or -isothiourea is converted by intramolecular cyclization in the rice seedlings into the corresponding triazinone that serves as the active form.  相似文献   

4.
Summary The ultrastructure ofOryza sativa L. cells in suspension was determined as cells developed, matured and senesced at 3, 10, and 17 days, respectively, after transfer to fresh medium. Although cultures of 3-day-old cells contained some senescent cells, the symptoms of cell aging were very conspicuous at 10 days and were most pronounced at 17 days. The amount of cytoplasm decreased as the number of lytic areas, myelin figures and vesicle bodies increased. Other noticeable subcellular changes observed were ultrastructural modifications of mitochondria, proplastids, amyloplasts, and nuclei. Such changes were associated with a general deterioration of the lipoprotein complex of the cell during its growth. A fibrous structure without an external membrane was observed and its reported for the first time for cells grown in suspension culture.Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

5.
A simple dynamic model is proposed which will allow fermenters to be run at throughputs which fully utilize the mass transfer capabilities of the fermenters while not decreasing the yield from the substrate. The model is compared with one previously proposed, which was originally formulated for double substrate limitation when both substrates were supplied in the feed. Computer solutions of the model are given which show the effects of the parameters used. Experimental results from growing Candida utilis on a high concentration of glucose were found to be similar to those predicted by the model.  相似文献   

6.
7.
8.
Summary The effect of exogenous KNO3, the terminal acceptor of electrons in oxygen-free medium, on mitochondrial ultrastructure and on the growth rate of 4-day-old rice coleoptiles under strictly anoxic conditions was studied. Exogenous nitrate (10 mM) did not exert any significant effect on the growth rate of coleoptiles of intact seedlings compared to their growth in KNO3-free medium. Anaerobic incubation of detached coleoptiles in KNO3-free medium for 48 h resulted in the complete destruction of mitochondrial and other cell membranes. In the presence of KNO3, no mitochondrial-membrane destruction was observed even after 48 h anoxia although the mitochondrial ultrastructure was modifed. Cristae were arranged in parallel rows and elongated dumbbell-shaped mitochondria appeared in some cells. The data obtained indicate a protective role of exogenous nitrate as electron acceptors in oxygen-free medium. The results of the present investigation are discussed and compared with reports of either markedly damaging or favorable effects of exogenous nitrate on the growth, metabolism, and energetics of rice and other plants under hypoxic and anoxic conditions.  相似文献   

9.
10.
A M Krasnov 《Ontogenez》1987,18(2):221-224
Search for a factor limiting the growth rate is described the salmon fry taken as an example. A simple dependence between the specific growth rate and DNA content (of the nuclei) in muscles was found. Age changes in the growth rate are due to the fact that the appearance of new nuclei lags behind the growth of muscle cells. A few models were proposed on this basis which correspond to various growth types.  相似文献   

11.
Summary Eight mungbean cultivars, selected from a cultivar collection on the basis of their grain yield, were grown in a replicated experiment. Morphological and physiological components contributing to grain yield were analysed. The principal yield limiting factor and the desirable yield component of each cultivar have been identified. The rate of dry matter accumulation was low in all cultivars. It is suggested that for a short duration crop like this, selection for rapid rate of dry matter increase would be advantageous. However, it should also be associated with a high partitioning efficiency (Harvest index). The top yielding cultivar had high biological yield and productive racemes.Abbreviations BY biological yield - GY grain yield - HI harvest index - DM dry matter - DW dry weight - LA leaf area - GPP grain protein percent - GW grain weight  相似文献   

12.

Background and aims

To improve vegetable crops adapted to low input and variable resource availability, better understanding is needed of root system functioning, including nitrogen and water capture.

Methods

This study quantified shoot and root development and patterns of water and nitrate capture of two lettuce cultivars subjected to temporary drought at two development stages (Trial 1) or to continuous, localized drought and/or nitrate shortage (Trial 2).

Results

In Trial 1, early drought slowed down shoot and root growth, whereas late drought enhanced root proliferation in the top 0.1 m. Nitrate capture during drought was sustained by increased nitrate inflow from deeper layers. Plants did not recover fully from drought after re-watering. In Trial 2, root proliferation was stimulated in the drier soil compartment partially compensating reduced water availability and nitrate mobility. Under nitrate shortage, root proliferation was enhanced in the compartment where nitrate was more abundant, irrespective of water availability.

Conclusions

Changes observed in the root system are ‘feed-forward’ mechanisms to sustain resource capture in a limiting growing environment. The type of stress (drought or nitrate shortage) affects coping strategies; nitrate concentration in the soil solution, combined with the nutritional status of the plant will determine the stress response.  相似文献   

13.
Summary The initial transfer of fructosyl units in the utilization of sucrose led to the formation of fructose, oligomers or levan and was apparently controlled by the concentrations of sugars in the medium. In continuous fermentation, the rather low levels of monomeric sugars in the broth prevented the formation of sorbitol and oligomers, whereas the production of levan was increased compared to that in batch fermentation. The fructooligomers contained approximately one mole of glucose per two, three or four moles of fructose. The overall ethanol production rate was limited by the uptake rates of glucose and especially of fructose, which was decreased due to transfructosylation reactions.  相似文献   

14.
Lettuce growth under unstressed conditions was compared to growth under four limiting conditions, i.e. no phosphorus fertilization (0_P), no nitrogen fertilization (0_N), low light (LR) and water stress (WR) over two different growing periods. We investigated the adaptive changes in terms of the morphological and physiological leaf traits, identifying stress‐specific and ‘stable’ indicators suitable for use in breeding programmes. The plants subjected to the WR treatments had lower leaf expansion and specific leaf area (SLA), as well as lower soil–plant analysis development (SPAD) values, stomatal conductance (POR), water index (WI) and leaf temperature (TIR) compared with plants in the unstressed CONTROL. Low light increased the leaf area (LA), SLA and leaf mass ratio (LMR). The 0_N treatment induced a general reduction in the normalised difference vegetation index (NDVI) values, as well as strong changes in LMR and SLA. In general, 0_P induced less pronounced effects than the other treatments. Principal component analysis indicated that the stable and suitable selection indicators of adaptive changes for low nitrogen and low light conditions were LA, SLA, leaf area per unit total plant mass (LAR), LMR, SPAD and POR, while SPAD, POR, TIR and WI were suitable indicators for drought.  相似文献   

15.
Summary The absorption of gamma-emitting fission products106Ru,125Sb,137Cs and144Ce and activation products59Fe,58Co.54Mn and65Zn by rice plants grown on two contrasting tropical soils, namely, a blak soil (pellustert) and a laterite (oxisol), and the effects of flooding were studied under controlled conditions. Results indicated greater uptake of106Ru and125Sb from the black soil than from the laterite. In contrast, the uptake of144Ce and137Cs was greater in the laterite than in the black soil. Flooding treatment enhanced the uptake of all these fission products by rice plants in the laterite soil whereas this effect was observed only for125Sb and137Cs in the black soil.The plant uptake of activation products from the two soil types showed maximum accumulation of65Zn followed by54Mn,59Fe and58Co in both soil types. Besides, uptake of these nuclides was greater from the laterite soil than from the black soil. Flooding treatment for rice while showing a reduction of59Fe uptake, showed an increase in plant uptake of58Co,54Mn and65Zn in both soil types.  相似文献   

16.
Adequate pulmonary function at birth depends upon a mature surfactant system and lungs of normal size. Surfactant is controlled primarily by hormonal factors, especially from the hypophysis, adrenal, and thyroid; but these have little influence on fetal lung growth. In contrast, current data indicate that lung growth is determined by the following physical factors that permit the lungs to express their inherent growth potential. (a) Adequate intrathoracic space: lesions that decrease intrathoracic space impede lung growth, apparently by physical compression. (b) Adequate amount of amniotic fluid: oligohydramnios retards lung growth, possibly by lung compression or by affecting fetal breathing movements or the volume of fluid within the potential airways and airspaces. (c) Fetal breathing movements of normal incidence and amplitude: fetal breathing movements stimulate lung growth, possibly by stretching the pulmonary tissue, and do not affect mean pulmonary blood flow but do induce small changes in phasic flow; these changes are probably too slight to influence lung growth. (d) Normal balance of volumes and pressures within the potential airways and airspaces: in the fetus, tracheal pressure greater than amniotic pressure greater than pleural pressure. This differential produces a distending pressure which may promote lung growth. Disturbing the normal pressure relationships alters the volume of fluid in the lungs and distorts lung growth, which is stimulated by distending the lungs and is impeded by decreasing lung fluid volume. The mechanisms by which these factors affect lung growth remain to be defined. Fetal lung growth also depends on at least a small amount of blood flow through the pulmonary arteries.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A process for bacterial expression and purification of the recombinant major wasp allergen Antigen 5 (Ves v 5) was developed to produce protein for diagnostic and therapeutic applications for type 1 allergic diseases. Special attention was focused on medium selection, fermentation conditions, and efficient refolding procedures. A soy based medium was used for fermentation to avoid peptone from animal origin. Animal-derived peptone required the use of isopropyl-beta-D-thiogalactopyranoside (IPTG) for the induction of expression. In the case of soy peptone, a constitutive expression was observed, suggesting the presence of a component that mimics IPTG. Batch cultivation at reduced stirrer speed caused a reduced biomass due to oxygen limitation. However, subsequent purification and processing of inclusion bodies yielded significantly higher amount of product. Furthermore, the protein composition of the inclusion bodies differed. Inclusion bodies were denatured and subjected to diafiltration. Detailed monitoring of diafiltration enabled the determination of the transition point. Final purification was conducted using cation-exchange and size-exclusion chromatography. Purified recombinant Ves v 5 was analyzed by RP-HPLC, CD-spectroscopy, SDS-PAGE, and quantification ELISA. Up to 15 mg highly purified Ves v 5 per litre bioreactor volume were obtained, with endotoxin concentrations less than 20 EU mg(-1) protein and high comparability to the natural counterpart. Analytical results confirm the suitability of the recombinant protein for diagnostic and clinical applications. The results clearly demonstrate that not only biomass, but especially growth conditions play a key role in the production of recombinant Ves v 5. This has an influence on inclusion body formation, which in turn influences the renaturation rate and absolute product yield. This might also be true for other recombinant proteins that accumulate as inclusion bodies in Escherichia coli.  相似文献   

18.
Recent progress in improving the salt tolerance of cultivated plants has been slow. Physiologists have been unable to define single genes or even specific metabolic processes that molecular biologists could target, or pinpoint the part of the plant in which such genes for salt tolerance might be expressed. While the physiological might be expressed. While the physiological processes are undoubtedly complex, faster progress on unraveling mechanisms of salt tolerance might be made if there were more effort to test hypotheses rather than to accumulate data, and to integrate cellular and whole plant responses. This article argues that salts taken up by the plant do not directly control plant growth by affecting turgor, photosynthesis or the activity of any one enzyme. Rather, the build-up of salt in old leaves hasten their death, and the loss of these leaves affects the supply of assimilates or hormones to the growing regions and thereby affects growth.  相似文献   

19.
This study investigated the physiological mechanisms of resistance to chloramines developed by Klebsiella pneumoniae grown in a nutrient-limited environment. Growth under these conditions resulted in cells that were smaller than cells grown under high-nutrient conditions and extensively aggregated. Cellular aggregates ranged from 10 to more than 10,000 cells per aggregate, with a mean population aggregate size of 90 cells. This aggregation may have been facilitated by the presence of extracellular polymer material. By using glucose as a reference of capsule content, it was determined that growth under low-nutrient conditions produced cells with 8 x 10(-14) to 41 x 10(-14) g of carbohydrate per cell, with a mean +/- standard deviation of 27 x 10(-14) +/- 16 x 10(-14) g of carbohydrate per cell. In comparison, growth under high-nutrient conditions resulted in 2.7 x 10(-14) to 5.9 x 10(-14) g of carbohydrate per cell, with a mean and standard deviation of 4.3 x 10(-14) +/- 1.2 x 10(-14) g of carbohydrate per cell. Cell wall and cell membrane lipids also varied with growth conditions. The ratio of saturated to unsaturated fatty acids in cells grown under low-nutrient conditions was approximately five times greater than that in cells grown under high-nutrient conditions, suggesting possible differences in membrane permeability. An analysis of sulfhydryl (-SH) groups revealed no quantitative difference with respect to growth conditions. However, upon exposure to chloramines, only 33% of the -SH groups of cells grown under low-nutrient conditions were oxidized, compared with 80% oxidization of -SH groups in cells grown under high-nutrient conditions. The reduced effectiveness of chloramine oxidization of -SH groups in cells grown under low-nutrient conditions may be due to restricted penetration of chloramines into the cells, conformational changes of enzymes, or a combination of both factors. The results of this study suggest that chloramine resistance developed under low-nutrient growth conditions may be a function of multiple physiological factors, including cellular aggregation and protection of sulfhydryl groups within the cell.  相似文献   

20.
This study investigated the physiological mechanisms of resistance to chloramines developed by Klebsiella pneumoniae grown in a nutrient-limited environment. Growth under these conditions resulted in cells that were smaller than cells grown under high-nutrient conditions and extensively aggregated. Cellular aggregates ranged from 10 to more than 10,000 cells per aggregate, with a mean population aggregate size of 90 cells. This aggregation may have been facilitated by the presence of extracellular polymer material. By using glucose as a reference of capsule content, it was determined that growth under low-nutrient conditions produced cells with 8 x 10(-14) to 41 x 10(-14) g of carbohydrate per cell, with a mean +/- standard deviation of 27 x 10(-14) +/- 16 x 10(-14) g of carbohydrate per cell. In comparison, growth under high-nutrient conditions resulted in 2.7 x 10(-14) to 5.9 x 10(-14) g of carbohydrate per cell, with a mean and standard deviation of 4.3 x 10(-14) +/- 1.2 x 10(-14) g of carbohydrate per cell. Cell wall and cell membrane lipids also varied with growth conditions. The ratio of saturated to unsaturated fatty acids in cells grown under low-nutrient conditions was approximately five times greater than that in cells grown under high-nutrient conditions, suggesting possible differences in membrane permeability. An analysis of sulfhydryl (-SH) groups revealed no quantitative difference with respect to growth conditions. However, upon exposure to chloramines, only 33% of the -SH groups of cells grown under low-nutrient conditions were oxidized, compared with 80% oxidization of -SH groups in cells grown under high-nutrient conditions. The reduced effectiveness of chloramine oxidization of -SH groups in cells grown under low-nutrient conditions may be due to restricted penetration of chloramines into the cells, conformational changes of enzymes, or a combination of both factors. The results of this study suggest that chloramine resistance developed under low-nutrient growth conditions may be a function of multiple physiological factors, including cellular aggregation and protection of sulfhydryl groups within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号