首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Characterising the protein signatures in tumours following vascular-targeted therapy will help determine both treatment response and resistance mechanisms. Here, mass spectrometry imaging and MS/MS with and without ion mobility separation have been used for this purpose in a mouse fibrosarcoma model following treatment with the tubulin-binding tumour vascular disrupting agent, combretastatin A-4-phosphate (CA-4-P). Characterisation of peptides after in situ tissue tryptic digestion was carried out using Matrix-Assisted Laser Desorption/Ionisation-Mass Spectrometry (MALDI-MS) and Matrix-Assisted Laser Desorption/Ionisation-Ion Mobility Separation-Mass Spectrometry Imaging (MALDI IMS-MSI) to observe the spatial distribution of peptides. Matrix-Assisted Laser Desorption/Ionisation-Ion Mobility Separation-Tandem Mass Spectrometry (MALDI-IMS-MS/MS) of peaks was performed to elucidate any pharmacological responses and potential biomarkers. By taking tumour samples at a number of time points after treatment gross changes in the tissue were indicated by changes in the signal levels of certain peptides. These were identified as arising from haemoglobin and indicated the disruption of the tumour vasculature. It was hoped that the use of PCA-DA would reveal more subtle changes taking place in the tumour samples however these are masked by the dominance of the changes in the haemoglobin signals.  相似文献   

2.
Previous studies on mammalian peroxidases and cytochrome P450 family 4 enzymes have shown that a carboxylic group positioned close to a methyl group of the prosthetic heme is required for the formation of a covalent link between a protein carboxylic acid side chain and the heme. To determine whether there are additional requirements for covalent bond formation in the P450 enzymes, a glutamic acid or an aspartic acid has been introduced into P450(cam) close to the heme 5-methyl group. Spectroscopic and kinetic studies of the resulting G248E and G248D mutants suggest that the carboxylate group coordinates with the heme iron atom, as reported for a comparable P450(BM3) mutant [Girvan, H. M., Marshall, K. R., Lawson, R. J., Leys, D., Joyce, M. G., Clarkson, J., Smith, W. E., Cheesman, M. R., and Munro, A. W. (2004) J. Biol. Chem. 279, 23274-23286]. The two P450(cam) mutants have low catalytic activity, but in contrast to the P450(BM3) mutant, incubation of the G248E (but not G248D) mutant with camphor, putidaredoxin, putidaredoxin reductase, and NADH results in partial covalent binding of the heme to the protein. No covalent attachment is observed in the absence of camphor or any of the other reaction components. Pronase digestion of the G248E P450(cam) mutant after covalent attachment of the heme releases 5-hydroxyheme, establishing that the heme is covalently attached through its 5-methyl group as predicted by in silico modeling. The results establish that a properly positioned carboxyl group is the sole requirement for autocatalytic formation of a heme-protein link in P450 enzymes, but also show that efficient covalent binding requires placement of the carboxyl close to the methyl but in a manner that prevents strong coordination to the iron atom.  相似文献   

3.
Heme oxygenase regiospecifically oxidizes heme at the alpha-meso position to give biliverdin IXalpha, CO, and iron. The heme orientation within the active site, which is thought to determine the oxidation regiospecificity, is shown here for the human enzyme (hHO1) to be largely determined by interactions between the heme carboxylic acid groups and residues Arg183 and Lys18 but not Tyr134. Mutation of either Arg183 or Lys18 individually does not significantly alter the NADPH-cytochrome P450 reductase-dependent reaction regiochemistry but partially shifts the oxidation to the beta/delta-meso positions in the reaction supported by ascorbic acid. Mutation of Glu29 to a lysine, which places a positive charge where it can interact with a heme carboxyl if the heme rotates by approximately 90 degrees, causes a slight loss of regiospecificity but combined with the R183E and K18E mutations results primarily in beta/delta-meso oxidation of the heme under all conditions. NMR analysis of heme binding to the triple K18E/E29K/R183E mutant confirms rotation of the heme in the active site. Kinetic studies demonstrate that mutations of Arg183 greatly impair the rate of the P450 reductase-dependent reaction, in accord with the earlier finding that Arg183 is involved in binding of the reductase to hHO1, but have little effect on the ascorbate reaction. Mutations of Asp140 and Tyr58 that disrupt the active site hydrogen bonding network impair catalytic rates but do not influence the oxidation regiochemistry. The results indicate both that the oxidation regiochemistry is largely controlled by ionic interactions of the heme propionic acid groups with the protein and that shifts in regiospecificity involve rotation of the heme about an axis perpendicular to the heme plane.  相似文献   

4.
The prosthetic heme group in the CYP4A family of cytochrome P450 enzymes is covalently attached to an I-helix glutamic acid residue. This glutamic acid is conserved in the CYP4 family but is absent in other P450 families. As shown here, the glutamic acid is linked, presumably via an ester bond, to a hydroxyl group on the heme 5-methyl group. Mutation of the glutamic acid to an alanine in CYP4A1, CYP4A3, and CYP4A11 suppresses covalent heme binding. In wild-type CYP4A3 68% of the heme is covalently bound to the heterologously expressed protein, but in the CYP4A3/E318D mutant, 47% of the heme is unchanged, 47% is present as noncovalently bound 5-hydroxymethylheme, and only 6% is covalently bound to the protein. In the CYP4A3/E318Q mutant, the majority of the heme is unaltered, and <2% is covalently linked. The proportion of covalently bound heme in the recombinant CYP4A proteins increases with time under turnover conditions. The catalytic activity is sensitive in some, but not all, CYP4A enzymes to the extent of covalent heme binding. Mutations of Glu(318) in CYP4A3 decrease the apparent k(cat) values for lauric acid hydroxylation. The key conclusions are that (a) covalent heme binding occurs via an ester bond to the heme 5-methyl group, (b) covalent binding of the heme is mediated by an autocatalytic process, and (c) fatty acid oxidation is sensitive in some CYP4A enzymes to the presence or absence of the heme covalent link.  相似文献   

5.
The Bjorkman lignin from the European spruce (Picea abies) was destructed in trifluoromethane-sulfonic super acid (CF3SO3H) at 0°C for 2 h. Masses of the molecules in the starting Bjorkman lignin (600?C4400 Da) and masses of products of the lignin conversion in CF3SO3H (150?C1800 Da) were determined by the Matrix-Assisted Laser Desorption Ionization mass spectrometry (MALDI mass spectrometry).  相似文献   

6.
The technique of parallel automated synthesis of oligodeoxynucleotides bearing various local thiophosphoryl internucleotide bonds was optimized using assembling in the standby mode and creation of special program blocks. The selected conditions of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI TOF MS) provided an increase in the method sensitivity (up to 1–10 fmol of oligonucleotide in sample) and registration of reliable spectra of oligodeoxynucleotide thiophosphoryl analogues. This enables to reliably prove the presence of the specified number of thiophosphoryl bonds within synthetic sequences. A series of oligodeoxynucleotides, thioanalogues of d(GGTTGGTGTGGTTGG), a known G-quadruplex antithrombin aptamer, were obtained.  相似文献   

7.
The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed to the reactive 117 site of Synechocystis Hb as a potential determinant of biophysical and, perhaps, functional properties.  相似文献   

8.
We present a systematic investigation of how the axial ligand in heme proteins influences the geometry, electronic structure, and spin states of the active site, and the energies of the reaction cycles. Using the density functional B3LYP method and medium-sized basis sets, we have compared models with His, His+Asp, Cys, Tyr, and Tyr+Arg as found in myoglobin and hemoglobin, peroxidases, cytochrome P450, and heme catalases, respectively. We have studied 12 reactants and intermediates of the reaction cycles of these enzymes, including complexes with H(2)O, OH(-), O(2-), CH(3)OH, O(2), H(2)O(2), and HO(2)(-) in various formal oxidation states of the iron ion (II to V). The results show that His gives ~0.6 V higher reduction potentials than the other ligands. In particular, it is harder to reduce and protonate the O(2) complex with His than with the other ligands, in accordance with the O(2) carrier function of globins and the oxidative chemistry of the other proteins. For most properties, the trend Cys相似文献   

9.
The technique of parallel automated synthesis of oligodeoxynucleotides bearing various local thiophosphoryl internucleotide bonds was optimized using assembling in the standby mode and creation of special program blocks. The selected conditions of Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI TOF MS) provided an increase in the method sensitivity (up to 1-10 fmol of oligonucleotide in sample) and registration of reliable spectra of oligodeoxynucleotide thiophosphoryl analogues. This enables to reliably prove the presence of the specified number of thiophosphoryl bonds within synthetic sequences. A series of oligodeoxynucleotides, thioanalogues of d(GGTTGGTGTGGTTGG), a known G-quadruplex antithrombin aptamer, were obtained.  相似文献   

10.
HasA(SM) secreted by the Gram-negative bacterium Serratia marcescens belongs to the hemophore family. Its role is to take up heme from host heme carriers and to shuttle it to specific receptors. Heme is linked to the HasA(SM) protein by an unusual axial ligand pair: His32 and Tyr75. The nucleophilic nature of the tyrosine is enhanced by the hydrogen bonding of the tyrosinate to a neighboring histidine in the binding site: His83. We used isothermal titration microcalorimetry to examine the thermodynamics of heme binding to HasA(SM) and showed that binding is strongly exothermic and enthalpy driven: DeltaH = -105.4 kJ x mol(-1) and TDeltaS = -44.3 kJ x mol(-1). We used displacement experiments to determine the affinity constant of HasA(SM) for heme (K(a) = 5.3 x 10(10) M(-1)). This is the first time that this has been reported for a hemophore. We also analyzed the thermodynamics of the interaction between heme and a panel of single, double, and triple mutants of the two axial ligands His32 and Tyr75 and of His83 to assess the implication of each of these three residues in heme binding. We demonstrated that, in contrast to His32, His83 is essential for the binding of heme to HasA(SM), even though it is not directly coordinated to iron, and that the Tyr75/His83 pair plays a key role in the interaction.  相似文献   

11.
Using both high performance liquid chromatography (HPLC) and amino acid sequencing (AAS), we previously analyzed band 3 TM peptide-segments that make up the transmembrane protein structure. However, the HPLC/AAS combination method was highly time-consuming. Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry is used to obtain accurate molecular weight information for proteins/peptides simply and sensitively. We applied the MALDI-TOF mass spectrometry technique to search for TM segments in membrane proteins. In combination with trypsin cleavages after alkali treatments (pH12 or 13) and sample preparation using organic solvents for MALDI-TOF mass spectrometry, we determined the TM segments of band 3 and glycophorin A in erythrocyte membrane. The method can be applied to other polytopic membrane proteins in erythrocyte membrane.  相似文献   

12.
亚心形扁藻(Platymonas subcordiformis)是新发现的一株产氢海洋单细胞绿藻,经过胁迫调控可实现一定时间的持续产氢。氢酶是亚心形扁藻在胁迫条件下进行光合产氢的一个关键酶。但到目前为止,亚心形扁藻氢酶相关信息仍不清楚。利用蛋白合成抑制剂氯霉素和放线菌酮对亚心形扁藻氢酶活性进行考察,同时利用免疫印迹技术和免疫胶体金电镜对亚心形扁藻氢酶蛋白进行亚细胞定位分析。结果表明:亚心形扁藻氢酶蛋白可能由胞浆内合成,在叶绿体行使功能。采用免疫共沉淀技术富集亚心形扁藻细胞氢酶蛋白,SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)对免疫共沉淀复合物进行分离,从胶中切取目的蛋白条带,胶内酶解后进行基质辅助激光解吸飞行时间质谱(MALDI-TOF-MS)分析,得到相应的肽指纹图谱,通过搜索数据库检索初步断定亚心形扁藻氢酶蛋白为铁氢酶。  相似文献   

13.
Three independent experimental methods, liquid chromatography, denaturing gel electrophoresis with heme staining, and mass spectrometry, establish that the CYP4A class of enzymes has a covalently bound heme group even though the heme is not cross-linked to the protein in other P450 enzymes. Covalent binding has been demonstrated for CYP4A1, -4A2, -4A3, -4A8, and -4A11 heterologously expressed in Escherichia coli. However, the covalent link is also present in CYP4A1 isolated from rat liver and is not an artifact of heterologous expression. The extent of heme covalent binding in the proteins as isolated varies and is substoichiometric. In CYP4A3, the heme is attached to the protein via an ester link to glutamic acid residue 318, which is on the I-helix, and is predicted to be within the active site. This is the first demonstration that a class of cytochrome P450 enzymes covalently binds their prosthetic heme group.  相似文献   

14.
The multidomain fatty-acid hydroxylase flavocytochrome P450 BM3 has been studied as a paradigm model for eukaryotic microsomal P450 enzymes because of its homology to eukaryotic family 4 P450 enzymes and its use of a eukaryotic-like diflavin reductase redox partner. High-resolution crystal structures have led to the proposal that substrate-induced conformational changes lead to removal of water as the sixth ligand to the heme iron. Concomitant changes in the heme iron spin state and heme iron reduction potential help to trigger electron transfer from the reductase and to initiate catalysis. Surprisingly, the crystal structure of the substrate-free A264E heme domain mutant reveals the enzyme to be in the conformation observed for substrate-bound wild-type P450, but with the iron in the low-spin state. This provides strong evidence that the spin-state shift observed upon substrate binding in wild-type P450 BM3 not only is caused indirectly by structural changes in the protein, but is a direct consequence of the presence of the substrate itself, similar to what has been observed for P450cam. The crystal structure of the palmitoleate-bound A264E mutant reveals that substrate binding promotes heme ligation by Glu(264), with little other difference from the palmitoleate-bound wild-type structure observable. Despite having a protein-derived sixth heme ligand in the substrate-bound form, the A264E mutant is catalytically active, providing further indication for structural rearrangement of the active site upon reduction of the heme iron, including displacement of the glutamate ligand to allow binding of dioxygen.  相似文献   

15.
This video demonstrates the preparation of an ultra-thin matrix/analyte layer for analyzing peptides and proteins by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) (1, 2). The ultra-thin layer method involves the production of a substrate layer of matrix crystals (alpha-cyano-4-hydroxycinnamic acid) on the sample plate, which serves as a seeding ground for subsequent crystallization of a matrix/analyte mixture. Advantages of the ultra-thin layer method over other sample deposition approaches (e.g. dried droplet) are that it provides (i) greater tolerance to impurities such as salts and detergents, (ii) better resolution, and (iii) higher spatial uniformity. This method is especially useful for the accurate mass determination of proteins. The protocol was initially developed and optimized for the analysis of membrane proteins and used to successfully analyze ion channels, metabolite transporters, and receptors, containing between 2 and 12 transmembrane domains (2). Since the original publication, it has also shown to be equally useful for the analysis of soluble proteins. Indeed, we have used it for a large number of proteins having a wide range of properties, including those with molecular masses as high as 380 kDa (3). It is currently our method of choice for the molecular mass analysis of all proteins. The described procedure consistently produces high-quality spectra, and it is sensitive, robust, and easy to implement.  相似文献   

16.
Inactivation of cytochrome P450 2E1 by tert-butyl isothiocyanate (tBITC) resulted in a loss in the spectrally detectable P450-reduced CO complex. The heme prosthetic group does not appear to become modified, since little loss of the heme was observed in the absolute spectra or the pyridine hemochrome spectra, or in the amount of heme recovered from HPLC analysis of the tBITC-inactivated samples. Prolonged incubations of the inactivated P450 2E1 with dithionite and CO resulted in a recovery of both the CO complex and the enzymatic activity. Inactivated samples that were first reduced with dithionite for 1 h prior to CO exposure recovered their CO spectrum to the same extent as samples not pretreated with dithionite, suggesting that the major defect was an inability of the inactivated sample to bind CO. Spectral binding studies with 4-methylpyrazole indicated that the inactivated P450 2E1 had an impaired ability to bind the substrate. Enzymatic activity could not be restored with iodosobenzene as the alternate oxidant. EPR analysis indicated that approximately 24% of the tBITC-inactivated P450 2E1 was EPR-silent. Of the remaining tBITC-inactivated P450 2E1, approximately 45% exhibited an unusual low-spin EPR signal that was attributed to the displacement of a water molecule at the sixth position of the heme by a tBITC modification to the apoprotein. ESI-LC-MS analysis of the inactivated P450 2E1 showed an increase in the mass of the apoprotein of 115 Da. In combination, the data suggest that tBITC inactivated P450 2E1 by binding to a critical active site amino acid residue(s). This modified amino acid(s) presumably acts as the sixth ligand to the heme, thereby interfering with oxygen binding and substrate binding.  相似文献   

17.
Blobaum AL  Lu Y  Kent UM  Wang S  Hollenberg PF 《Biochemistry》2004,43(38):11942-11952
tert-Butyl acetylene (tBA) is a mechanism-based inactivator of cytochromes P450 2E1 and 2E1 T303A; however, the inactivation of the T303A mutant could be reversed by overnight dialysis. The inactivation of P450 2E1 T303A, but not the wild-type 2E1 enzyme, by tBA resulted in the formation of a novel reversible acetylene-iron spectral intermediate with an absorption maximum at 485 nm. The formation of this intermediate required oxygen and could be monitored spectrally with time. Although the alternate oxidants tert-butyl hydroperoxide (tBHP) and cumene hydroperoxide (CHP) supported the inactivation of wild-type P450 2E1 by tBA in a reductase- and NADPH-free system, only tBHP supported the inactivation of the 2E1 T303A mutant. The losses in enzymatic activity occurred concomitantly with losses in the native P450 heme, which were accompanied by the formation of tBA-adducted heme products. The inactivations supported by tBHP and CHP were completely irreversible with overnight dialysis. Spectral binding constants (K(s)) for the binding of tBA to the 2E1 P450s together with models of the enzymes with the acetylenic inactivator bound in the active site suggest that the T303A mutation results in increased hydrophobic interactions between tBA and nearby P450 residues, leading to a higher binding affinity for the acetylene compound in the mutant enzyme. Together, these data support a role for the highly conserved T303 residue in proton delivery to the active site of P450 2E1 and in the inactivation of the 2E1 P450s by small acetylenic compounds.  相似文献   

18.
Three mutant proteins of sperm whale myoglobin (Mb) that exhibit altered axial ligations were constructed by site-directed mutagenesis of a synthetic gene for sperm whale myoglobin. Substitution of distal pocket residues, histidine E7 and valine E11, with tyrosine and glutamic acid generated His(E7)Tyr Mb and Val(E11)Glu Mb. The normal axial ligand residue, histidine F8, was also replaced with tyrosine, resulting in His(F8)Tyr Mb. These proteins are analogous in their substitutions to the naturally occurring hemoglobin M mutants (HbM). Tyrosine coordination to the ferric heme iron of His(E7)Tyr Mb and His(F8)Tyr Mb is suggested by optical absorption and EPR spectra and is verified by similarities to resonance Raman spectral bands assigned for iron-tyrosine proteins. His(E7)Tyr Mb is high-spin, six-coordinate with the ferric heme iron coordinated to the distal tyrosine and the proximal histidine, resembling Hb M Saskatoon [His(beta E7)Tyr], while the ferrous iron of this Mb mutant is high-spin, five-coordinate with ligation provided by the proximal histidine. His(F8)Tyr Mb is high-spin, five-coordinate in both the oxidized and reduced states, with the ferric heme iron liganded to the proximal tyrosine, resembling Hb M Iwate [His(alpha F8)Tyr] and Hb M Hyde Park [His(beta F8)Tyr]. Val(E11)Glu Mb is high-spin, six-coordinate with the ferric heme iron liganded to the F8 histidine. Glutamate coordination to the ferric iron of this mutant is strongly suggested by the optical and EPR spectral features, which are consistent with those observed for Hb M Milwaukee [Val(beta E11)Glu]. The ferrous iron of Val(E11)Glu Mb exhibits a five-coordinate structure with the F8 histidine-iron bond intact.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Vuletich DA  Falzone CJ  Lecomte JT 《Biochemistry》2006,45(47):14075-14084
The recombinant two-on-two hemoglobin from the cyanobacterium Synechoccocus sp. PCC 7002 (S7002 rHb) is a bishistidine hexacoordinate globin capable of forming a covalent cross-link between a heme vinyl and a histidine in the C-terminal helix (H helix). Of the two heme axial histidines, His46 (in the E helix, distal side) and His70 (in the F helix, proximal histidine), His46 is displaced by exogenous ligands. S7002 rHb can be readily prepared as an apoglobin (apo-rHb), a non-cross-linked hemichrome (ferric iron and histidine axial ligands, rHb-R), and a cross-linked hemichrome (rHb-A). To determine the effects of heme binding and subsequent cross-linking, apo-rHb, rHb-R, and rHb-A were subjected to thermal denaturation and 1H/2H exchange. Interpretation of the latter data was based on nuclear magnetic resonance assignments obtained with uniformly 15N- and 13C,15N-labeled proteins. Apo-rHb was found to contain a cooperative structural core, which was extended and stabilized by heme binding. Cross-linking resulted in further stabilization attributed mainly to an unfolded-state effect. Protection factors were higher at the cross-link site and near His70 in rHb-A than in rHb-R. In contrast, other regions became less resistant to exchange in rHb-A. These included portions of the B and E helices, which undergo large conformational changes upon exogenous ligand binding. Thus, the cross-link readjusted the dynamic properties of the heme pocket. 1H/2H exchange data also revealed that the B, G, and H helices formed a robust core regardless of the presence of the heme or cross-link. This motif likely encompasses the early folding nucleus of two-on-two globins.  相似文献   

20.
The alcohol-inducible cytochrome P450 2E1 is a major human hepatic P450 which metabolizes a broad array of endogenous and exogenous compounds, including ethanol, low-molecular weight toxins, and fatty acids. Several substrates are known to stabilize this P450 and inhibit its cellular degradation. Furthermore, ethanol is a known modulator of P450 2E1 substrate metabolism. We examined the CO binding kinetics of P450 2E1 after laser flash photolysis of the heme-CO bond, to probe the effects of ethanol and other substrates on protein conformation and dynamics. Ethanol had an effect on the two kinetic parameters that describe CO binding: it decreased the rate of CO binding, suggesting a decrease in the protein's conformational flexibility, and increased the photosensitivity, which indicates a local effect in the active site region such as strengthening of the heme-CO bond. Other substrates decreased the CO binding rate to varying degrees. Of particular interest is the effect of arachidonic acid, which abolished photodissociation in the absence of ethanol but had no effect in the presence of ethanol. These results are consistent with a model of P450 2E1 whereby arachidonic acid binds along a long hydrophobic binding pocket and blocks exit of CO from the heme region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号