首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In tobacco plants, wounding induces production of a set of defense-related proteins such as basic pathogenesis-related (PR) proteins and proteinase inhibitors (PIs) via the jasmonate/ethylene pathway. Although class III plant peroxidase (POX) is also wound-inducible, the regulatory mechanism for its wound-induced expression is not fully understood. Here, we describe that a tobacco POX gene (tpoxN1), which is constitutively expressed in roots, is induced locally 30 min after wounding and then systemically in tobacco plants. Infection of necrotizing virus also induced tpoxN1 gene. The wound-induced expression was not enhanced by known wound-signal compounds such as methyl jasmonate (MeJA) and ethephon in contrast to other wound-inducible genes such as basic PR-1 and PI-II genes. And treatment with MeJA and coronatine, biological analogs of jasmonate, rather suppressed the tpoxN1 expression. Salicylic acid, an antagonist of jasmonate-based wound signaling, did not suppress the wound-induced expression of tpoxN1. Only spermine, which is reported as an endogenous inducer for acidic PR genes in tobacco mosaic virus-infected tobacco leaves, could induce tpoxN1 gene expression. These results suggest that wound-induced expression of the tpoxN1 gene is regulated differently from that of the basic PR and PI-II genes.  相似文献   

2.
The wound-induced expression of tpoxN1, encoding a tobacco peroxidase, is unique because of its vascular system-specific expression and insensitivity to known wound-signal compounds such as jasmonic acid, ethylene, and plant hormones [Sasaki et al. (2002) Plant Cell Physiol 43:108–117]. To study the mechanism of expression, the 2-kbp tpoxN1 promoter region and successive 5′-deletion of the promoter were introduced as GUS fusion genes into tobacco plants. Analysis of GUS activity in transgenic plants indicated that a vascular system-specific and wound-responsive cis-element (VWRE) is present at the −239/−200 region of the promoter. Gel mobility shift assays suggested that a nuclear factor(s) prepared from wounded tobacco stems binds a 14-bp sequence (−229/−215) in the −239/−200 region in a sequence-specific manner. A mutation in this 14-bp region of the −239 promoter fragment resulted in a considerable decrease in wound-responsive GUS activity in transgenic plants. An 11-bp sequence, which completely overlaps with the 14-bp sequence, was found in the 5′ distal region (−420/−410) and is thought to contribute to the wound-induced expression together with the 14-bp. The −114-bp core promoter of the tpoxN1 gene was indispensable for wound-induced expression, indicating that the 14-bp region is a novel wound-responsive cis-element VWRE, which may work cooperatively with other factors in the promoter.  相似文献   

3.
4.
Salicylic acid (SA) is absolutely required for establishment of acquired resistance in non-infected tissues following localized challenge of other leaves with a necrotizing pathogen. Although not directly responsive to SA, or induced systemically following pathogen challenge, the expression of defence gene promoter fusions AoPR1—GUS and PAL-3—GUS after wounding or pathogen challenge could be enhanced by pre-treating tobacco plants hydroponically with SA, a phenomenon designated 'potentiation'. Potentiation of AoPR1—GUS wound-responsiveness was also demonstrated locally, but not systemically, in tobacco tissue exhibiting acquired resistance following infection with either viral or bacterial pathogens. Potentiation of wound-responsive expression by prior wounding could not be demonstrated. In contrast, potentiation of pathogen-responsive AoPR1—GUS expression was exhibited both locally and systemically in non-infected tissue. The spatial and temporal exhibition of defence gene potentiation correlated directly with the acquisition of resistance in non-infected tissue. Pathogen-responsive potentiation was obtained at about 10-fold lower levels of salicylic acid than wounding-responsive potentiation in AoPR1—GUS tobacco plants prefed with salicylate. These results may explain the failure to observe systemic potentiation of the wound-responsive defence gene expression. The data suggest a dual role for SA in terms of gene induction in acquired immunity: a direct one by induction of genes such as pathogenesis-related proteins, and an indirect one by potentiation of expression of other local defence genes (such as PAL and AoPR1) which do not respond directly to SA but become induced on pathogen attack or wounding.  相似文献   

5.
6.
7.
The cucumber (Cucumis sativas) AAO1 gene (former name, Aso1) encodes an ascorbate oxidase that catalyzes the oxidation by molecular oxygen of ascorbic acid to dehydroascorbate. CsAAO1 mRNA concentrations rose rapidly after mechanical wounding of cucumbers. To study the wound-responsive expression of CsAAO1 in detail, we examined transgenic tobacco plants harboring a CsAAO1 promoter-beta-glucuronidase fusion gene. CsAAO1 promoter activity in leaves of the tobacco was induced by wounding. Analysis of the regulatory properties of 5'-deleted promoter fragments showed that a putative wound-responsive cis-element (WRE) was located -736 to -707 bp from the translation initiation site. DNA binding factors that bound specifically to the putative WRE sequence were identified in tobacco nuclear extracts by gel retardation assays.  相似文献   

8.
9.
Li Y  Hagen G  Guilfoyle TJ 《The Plant cell》1991,3(11):1167-1175
We constructed a chimeric gene consisting of a soybean small auxin up RNA (SAUR) promoter and leader sequence fused to an Escherichia coli [beta]-glucuronidase (GUS) open reading frame and a 3[prime] untranslated nopaline synthase sequence from Agrobacterium tumefaciens. This chimeric gene was used to transform tobacco by Agrobacterium-mediated transformation. In R2 etiolated transgenic tobacco seedlings, GUS expression occurred primarily in elongation regions of hypocotyls and roots. In green plants, GUS was expressed primarily in the epidermis and cortex of stems and petioles, as well as in elongation regions of anther filaments in developing flowers. GUS expression was responsive to exogenous auxin in the range of 10-8 to 10-3 M. During gravitropism and phototropism, the GUS activity became greater on the more rapidly elongating side of tobacco stems. Auxin transport inhibitors and other manipulations that blocked gravitropism also blocked the asymmetric distribution of GUS activity in gravistimulated stems. Light treatment of dark-grown seedlings resulted in a rapid decrease in GUS activity. Light-induced decay in GUS activity was fully reversed by application of auxin. Taken together, our results add support for the formation of an asymmetric distribution of auxin at sites of action during tropism.  相似文献   

10.
T Nishiuchi  T Hamada  H Kodama    K Iba 《The Plant cell》1997,9(10):1701-1712
The Arabidopsis FAD7 gene encodes a plastid omega-3 fatty acid desaturase that catalyzes the desaturation of dienoic fatty acids in membrane lipids. The mRNA levels of the Arabidopsis FAD7 gene in rosette leaves rose rapidly after local wounding treatments. Wounding also induced the expression of the FAD7 gene in roots. To study wound-responsive expression of the FAD7 gene in further detail, we analyzed transgenic tobacco plants carrying the -825 Arabidopsis FAD7 promoter-beta-glucuronidase fusion gene. In unwounded transformants, FAD7 promoter activity was restricted to the tissues whose cells contained chloroplasts. Activation of the FAD7 promoter by local wounding treatments was more substantial in stems (29-fold) and roots (10-fold) of transgenic plants than it was in leaves (approximately two-fold). Significant induction by wounding was observed in the overall tissues of stems and included trichomes, the epidermis, cortex, vascular system, and the pith of the parenchyma. Strong promoter activity was found preferentially in the vascular tissues of wounded roots. These results indicate that wounding changes the spatial expression pattern of the FAD7 gene. Inhibitors of the octadecanoid pathway, salicylic acid and n-propyl gallate, strongly suppressed the wound activation of the FAD7 promoter in roots but not in leaves or stems. In unwounded plants, exogenously applied methyl jasmonate activated the FAD7 promoter in roots, whereas it repressed FAD7 promoter activity in leaves. Taken together, wound-responsive expression of the FAD7 gene in roots is thought to be mediated via the octadecanoid pathway, whereas in leaves, jasmonate-independent wound signals may induce the activation of the FAD7 gene. These observations indicate that wound-responsive expression of the FAD7 gene in aerial and subterranean parts of plants is brought about by way of different signal transduction pathways.  相似文献   

11.
12.
13.
In vitro shoot cultures of chestnut (Castanea sativa Mill.) were used to identify wound-responsive genes. cDNA fragments of genes induced 3 and 24 h after wounding were isolated from stem tissue by the differential mRNA display method. Corresponding partial and full-length clones were isolated from a cDNA library of wounded stems. Putative wound-responsive signalling genes (serine–threonine protein kinase, two calmodulin genes), a novel wound-responsive putative chaperon gene (Csp13.9), and a new family of proline-rich proteins were identified. Northern analysis of bark tissue from 14-month-old seedlings revealed strong induction of these genes upon wounding in a temporal manner. Therefore we conclude that these early wound-inducible genes are involved in the wound response of bark tissue.  相似文献   

14.
The mechanisms that control the wound-induced expression of the prxC2 gene for horseradish peroxidase (HRP) have been investigated. Analysis of the regulatory properties of 5′-deleted promoters showed that a positive element involved in the response to wounding was located between −307 and −99 bp from the site of initiation of translation. In in vitro binding assays of tobacco nuclear proteins and DNA fragments of prxC2 promoter, the binding site was the Box 1 from −296 to −283 containing the CACGTG motif. To identify the functional role of Box 1, the prxC2 promoter that has been digested from the 5′ end to −289 with a disrupted Box 1 was fused to a reporter gene for β-glucuronidase (GUS). No induction of GUS activity was observed in transgenic tobacco plants with the prxC2(−289)/GUS construct. These data indicated that the expression of prxC2 in response to wounding required the Box 1 sequence from −296 to −283. Furthermore, a tobacco cDNA expression library was screened and a cDNA clone for a protein, designated TFHP-1, that bound specifically to the Box 1 sequence was identified. The putative TFHP-1 protein contains a basic region and leucine zipper (bZip) motif and a helix—loop—helix (HLH) motif. The mRNA for TFHP-1 was abundant in roots and stems, and it was not induced by wounding in leaves. In tobacco protoplasts, antisense TFHP-1 suppressed the expression of prxC2 (−529)/GUS.  相似文献   

15.
16.
17.
18.
The mitogen-activated protein kinase (MAPK) cascade is involved in responses to biotic and abiotic stress in plants. In this study, we isolated a new MAPK, NtMPK4, which is a tobacco homolog of Arabidopsis MPK4 (AtMPK4). NtMPK4 was activated by wounding along with two other wound-responsive tobacco MAPKs, WIPK and SIPK. We found that NtMPK4 was activated by salicylic acid-induced protein kinase kinase (SIPKK), which has been isolated as an SIPK-interacting MAPK kinase. In NtMPK4 activity-suppressed tobacco, wound-induced expression of jasmonic acid (JA)-responsive genes was inhibited. NtMPK4-silenced plants showed enhanced sensitivity to ozone. Inversely, transgenic tobacco plants, in which SIPKK or the constitutively active type SIPKK(EE) was overexpressed, exhibited greater responsiveness to wounding with enhanced resistance to ozone. We further found that NtMPK4 was expressed preferentially in epidermis, and the enhanced sensitivity to ozone in NtMPK4-silenced plants was caused by an abnormal regulation of stomatal closure in an ABA-independent manner. These results suggest that NtMPK4 is involved in JA signaling and in stomatal movement.  相似文献   

19.
选择适宜的转录调控序列以提高启动子的转录效率,增强外源基因在转基因植株中的表达,对改良作物的抗病虫性具有重要意义。将甘露碱合成酶基因(mas)启动子和章鱼碱合成酶基因(ocs)增强子杂合而成的嵌合启动子ocs/mas与GUS报告基因连接,构建了植物表达载体pOMS-GUS。对照载体pMAS-GUS仅携带mas启动子驱动的GUS基因。利用根癌农杆菌介导法,将以上植物表达载体分别转化烟草。应用半定量RT-PCR和GUS荧光定量分析法分别检测不同胁迫条件下启动子驱动的GUS基因表达量的变化。结果显示,未诱导处理的转基因植株GUS基因仅有微弱表达。伤害处理1h后,mas启动子驱动的GUS活性是未诱导处理的1.8倍,而嵌合启动子ocs/mas的诱导表达活性是未处理的5.7倍。植物激素水杨酸(SA)和茉莉酸甲酯(MJ)处理也诱导了较高水平的ocs/mas嵌合启动子活性;而且SA和MJ联合作用时呈现叠加效应,转基因烟草的GUS活性明显高于伤害处理后的GUS表达水平。以上结果表明,ocs/mas嵌合启动子是一种强诱导型启动子,可以接受多种刺激因子的诱导,从而为更有效地改良作物抗病虫的能力提供新的候选高效启动子元件。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号