首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CO2 in required continuously during germination of Streptomyces viridochromogenes spores. Spores incubated in a defined germination medium in the absence of CO2 remain phase bright and do not release spore carbon. In the presence of CO2, the spores initiate germination accompanied by loss of refractility and spore carbon. The CO2 requirement is replaced by oxaloacetate or a mixture of tricarboxylic acid cycle (TCA) intermediates. Labeled CO2 is taken up by germinating spores, and is incorporated into protein and RNA. TCA cycle intermediates and related amino acids contain most of the acid-soluble label following short term exposures of germinating spores to 14CO2. TCA cycle inhibitors repress germination and 14CO2 uptake whereas folic acid antagonists do not. The results indicate that CO2 is incorporated into oxaloacetate which is converted to biosynthetic intermediates required for germination. Operation of the TCA cycle appears to be essential for spore germination. The conclusion is reached that CO2 is required during germination in order to maintain the cycle by an anaplerotic reaction.Abbreviations SN sucrose-nitrate medium - TX buffer Trisbuffer pH 7.3 containing-Triton X-100 - DGM defined germination medium - TX salts TX buffer plus Mg and Ca ions - TA trichloroacctic acid - TCA tricarboxylic acid  相似文献   

2.
Abstract Streptomyces viridochromogenes was grown both as submerged and surface culture. Mycelia from these cultures were analysed for the composition of lipids and fatty acids. An increase in ornithinolipid content according to incubation time was observed. The addition of phosphate inhibited the ornithinolipid synthesis. A mutant strain with bald phenotype did not exhibit the phosphate inhibition. At the same time, the mutant strain had a higher content of 12-methyltetradecanoic acid.  相似文献   

3.
Summary Production of the dipeptide antibiotic bacilysin byBacillus subtilis 168 was growth associated and showed no evidence of repression by glucose or sucrose. Carbohydrates other than glucose and sucrose yielded lower specific titers of bacilysin. Bacilysin production in three such carbon sources (maltose, xylose, ribose) was delayed until growth slowed down. Ammonium salts were poor for bacilysin production when used as the sole nitrogen source. When added to the standard medium containing glutamate, they suppressed antibiotic production. Aspartate was slightly better than glutamate for antibiotic production as sole nitrogen source. No other nitrogen source tested, including inorganic, organic or complex, approached the activity of glutamate or aspartate. When added to glutamate, casamino acids, phenylalanine and alanine (a substrate of bacilysin synthetase) suppressed bacilysin production while stimulating growth. Phosphate provided for optimum growth and production at 7.5 mM and both processes were inhibited at higher concentrations. Ferric citrate stimulated growth and inhibited bacilysin production, the effects being due to both the iron and the citrate components. Elimination of ferric citrate stimulated production as did increasing the concentration of Mn to its optimum concentration of 6.6×10–4M.  相似文献   

4.
Cephalosporin production by growing cells of Streptomyces clavuligerus was reduced by 100 mM inorganic phosphate. Resting cell production was repressed by prior growth in high phosphate and inhibited by phosphate. The cell-free activity of desacetoxycephalosporin C synthetase (ring expansion activity) was repressed by prior growth in high phosphate and inhibited by phosphate. Isopenicillin N synthetase (cyclase) was inhibited but not repressed. Penicillin epimerase was neither inhibited nor repressed by phosphate.Abbreviations DCW dry cell weight - MOPS 3-(N-morpholino) propane-sulfonic acid  相似文献   

5.
6.
Synthesis of threonine dehydratase in Streptomyces fradiae was positively influenced by valine and negatively by isoleucine. However, these two amino acids had no effect on the activity of this enzyme. Synthesis of threonine dehydratase in -aminobutyrate resistant mutants of S. fradiae was pronouncedly less sensitive to the positive effect of valine and this change in regulation led to valine overproduction. Synthesis of acetohydroxy acid synthase is regulated in a similar manner to that of threonine dehydratase, however a lower level of expression was detected in -aminobutyrate resistant mutants. And again, no effect of branched-chain amino acids on acetohydroxy acid synthase activity was observed. It follows that in S. fradiae synthesis of threonine dehydratase is the main regulatory mechanism governing production and the mutual ratio of synthesized valine and isoleucine.Abbreviations -AB -aminobutyrate - AHAS acetohydroxy acid synthase - -KB -ketobutyrate - MNNG N-methyl-N-nitro-N-nitrosoguanidine - TD threonine dehydratase - Trans. B. transaminase of branched-chain amino acids - VDH valine dehydrogenase  相似文献   

7.
 The production of the 16-membered macrolide antibiotic, spiramycin, in Streptomyces ambofaciens is inhibited by glucose, 2-deoxyglucose and inorganic phosphate. The role of intracellular ATP content and phosphorylated metabolites as common regulating signals of both glucose and phosphate inhibitory effects is discussed. Two enzymatic targets of the effect of phosphate on spiramycin biosynthesis were studied. Valine dehydrogenase, the first enzyme of valine catabolism (supplier of aglycone spiramycin precursors), and alkaline phosphatase, which cleaves phosphorylated intermediates, were repressed in the presence of excess phosphate. Received: 2 May 1995/Received revision: 28 July 1995/Accepted: 4 August 1995  相似文献   

8.
9.
在青脚土杂肉鸡口粮中按照600mg/kg的比例添加绿色产色链霉菌诱变菌株W26菌株的液体深层发酵菌丝体,考察茼丝体别‘肉鸡的生产性能和肌肉品质的影响。实验结果表明:日粮中添加600mg/kg的绿色产色链霉菌菌丝体,叮以显著提高肉鸡的活体重,动物日增重与对照组相比提高了26.84%,显著改善了饲料转化率(P〈0.05)。菌丝体的添加可以提高肉鸡肌肉中必需氨基酸、蛋白质、灰分的含量,降低肌肉肌间脂肪含量,但效果不显著。综合实验结果说明,绿色产色链霉菌诱变菌株的液体深层发酵菌丝体可以显著提高青脚土杂肉鸡的生长性能。  相似文献   

10.
The regulation of cephalosporin synthesis in Cephalosporium acremonium was studied in a simple chemically-defined medium with glucose as the carbon source. Antibiotic synthesis depended on the phosphate content of the medium. At phosphate concentrations above 2.75 mM maximum antibiotic titres were not reached while glucose uptake and growth rates were increased. Phosphate exerted its effect indirectly by regulating the rate of glucose consumption. The negative effect of high phosphate concentrations could be overcome completely by controlling the sugar supply in fed-batch and chemostat experiments. High actual concentrations of phosphate or of glucose alone had no direct negative effect on antibiotic synthesis.  相似文献   

11.
A high concentration of potassium phosphate (75–100 mM) stabilized pH and supported extensive growth of Streptomyces clavuligerus in a chemically defined medium; such a concentration also inhibited cephalosporin production. Although Tris buffer was found to have detrimental effects on growth and antibiotic production, 3-(N-morpholino)-propane sulfonate (MOPS) or 2-(N-morpholino)-ethane sulfonate (MES) buffer provided a nontoxic buffering system. In the presence of MOPS buffer, cephalosporin production was optimal at 25 mM phosphate, whereas higher concentrations of phosphate progressively inhibited antibiotic production up to 85% without modifying the pH pattern. MOPS buffer can be used to conduct fermentations at a relatively constant pH value in shake flasks.List of Non-Common Abbreviations MOPS 3-(N-morpholino)propane sulfonic acid - MES 2-(N-morpholino)ethane sulfonic acid  相似文献   

12.
Summary The biosynthesis of avermectins was studied further inStreptomyces avermitilis MA5502 by feeding experiments with labeled precursors.13C-NMR analysis of the compounds biosynthesized from [2-13C]acetate, [1,2-13C2]acetate, [3-13C]propionate and [2,3-13C2]propionate confirmed that the aglycone of avermectins is made from seven intact acetate and five propionate units. Feeding experiments with [1-13C]2-methylbutyrate and [1-13C]isobutyrate have shown that 2-methylbutyrate and isobutyrate are immediate precursors of the starter units of the polyketide chains of avermectin a and b components, respectively. The3H/14C doublelabeling experiments suggest that the two oleandrose moieties are derived from glucose.  相似文献   

13.
In surface cultures of Streptomyces cyaneus var. viridochromogenes, NaCl depressed water activity (a w) without supporting growth. Reducing a w from 0.987 to 0.951 led to 3- and 4-fold increases in intracellular and extracellular phenol oxidase activities, respectively.  相似文献   

14.
Daptomycin is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus. Cubicin (daptomycin-for-injection) was approved in 2003 by the FDA to treat skin and skin structure infections caused by Gram-positive pathogens. Daptomycin is particularly significant in that it represents the first new natural product antibacterial structural class approved for clinical use in three decades. The daptomycin gene cluster contains three very large genes (dptA, dptBC, and dptD) that encode the nonribosomal peptide synthetase (NRPS). The related cyclic lipopeptide A54145 has four NRPS genes (lptA, lptB, lptC, and lptD), and calcium dependent antibiotic (CDA) has three (cdaPS1, cdaPS2, and cdaPS3). Mutants of S. roseosporus containing deletions of one or more of the NRPS genes have been trans-complemented with dptA, dptBC, and dptD by inserting these genes under the control of the ermEp* promoter into separate conjugal cloning vectors containing phiC31 or IS117 attachment (attP int) sites; delivering the plasmids into S. roseosporus by conjugation from Escherichia coli; and inserting the plasmids site-specifically into the chromosome at the corresponding attB sites. This trans-complementation system was used to generate subunit exchanges with lptD and cdaPS3 and the recombinants produced novel hybrid molecules. Module exchanges at positions D: -Ala(8) and D: -Ser(11) in the peptide have produced additional novel derivatives of daptomycin. The approaches of subunit exchanges and module exchanges were combined with amino acid modifications of Glu at position 12 and natural variations in lipid side chain starter units to generate a combinatorial library of antibiotics related to daptomycin. Many of the engineered strains produced levels of novel molecules amenable to isolation and antimicrobial testing, and most of the compounds displayed antibacterial activities.  相似文献   

15.
Li W  Liu G  Tan H 《Biotechnology letters》2003,25(18):1491-1497
The gene, sabR, encoding a receptor for -butyrolactone, was cloned from the genomic DNA of Streptomyces ansochromogenes 7100. Its deduced protein shows strong homology to several -butyrolactone-binding proteins in Streptomyces. Disruption of sabR retarded nikkomycin production in liquid media containing glucose or glycerol as carbon source. Sporulation of sabR disruption mutants was earlier than the parent strain on solid media with glucose or glycerol as carbon source. However, disruption of sabR had no effect on either nikkomycin production or sporulation on media containing mannitol as carbon source, suggesting that sabR is a pleiotropic regulatory gene that controls the onset of nikkomycin production and sporulation in S. ansochromogenes and is related to the utilization of carbon source.  相似文献   

16.
Levorin produced by Streptomyces levoris 99/23 was isolated, purified and characterized. It was established that 80% of the levorin was localized in the mycelium and only 20% was in the cell-free supernatant. Amorphous yellow levorin with activity of 24 000 IU/mg and 96% purity was obtained. The preparation exhibited three absorption maxima: at λ 362, 382 and 404 nm. The antibiotic contained seven components: A0, A1, A2, A3, A4, and two unidentified ones. According to its composition, the preparation corresponded to the levorin used for medicinal purposes. However, the levorin produced by S. levoris 99/23 contained half as much levorin A2 and a more than 100 times larger quantity of the more active and less toxic component levorin A3.  相似文献   

17.
Summary Glucose, 2-deoxy glucose and inorganic phosphate inhibited tylosin production and fatty acid oxidation in Streptomyces T 59–235. Glucose-6-phosphate was accumulated in high-phosphate cultures. The possible function of glucose phosphate as a common mediator of both glucose and phosphate effects is discussed.  相似文献   

18.
【目的】研究盐霉素生物合成基因簇上游潜在调控基因slnN的功能。【方法】本实验利用遗传操作技术,分别对白色链霉菌出发菌株Streptomyces albus BK3-25中的slnN基因进行敲除和过表达,然后利用抑菌圈实验和发酵实验,分别检测不同衍生菌株中盐霉素生物合成产量的变化。同时利用qRT-PCR分析衍生菌株与原始出发菌株之间的结构基因表达差异。【结果】结果表明在slnN基因缺失株(slnNDM)中,盐霉素的表达水平提高了35%左右;而在slnN基因过表达株(slnNOE)中,盐霉素产量下降达43%左右。qRT-PCR分析进一步发现slnN基因缺失,会引起slnO和slnA1基因的上调;而slnN基因过表达后,一方面会下调slnO与slnA1基因的表达,另一方面引起slnT1、slnF基因上调。【结论】本研究证实slnN基因对盐霉素的生物合成具有明显的负调控作用,其机制有待进一步研究。  相似文献   

19.
20.
We report the identification and characterization of the ste (Streptomyces eps) gene cluster of Streptomyces sp. 139 required for exopolysaccharide (EPS) biosynthesis. This report is the first genetic work on polysaccharide production in Streptomyces. To investigate the gene cluster involved in exopolysaccharide 139A biosynthesis, degenerate primers were designed to polymerase chain reaction amplify an internal fragment of the priming glycosyltransferase gene that catalyzes the first step in exopolysaccharide biosynthesis. Screening of a genomic library of Streptomyces sp. 139 with this polymerase chain reaction product as probe allowed the isolation of a ste gene cluster containing 22 open reading frames similar to polysaccharide biosynthesis genes of other bacterial species. Involvement of the ste gene cluster in exopolysaccharide biosynthesis was confirmed by disrupting the priming glycosyltransferase gene in Streptomyces sp. 139 to generate non-exopolysaccharide-producing mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号