首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To study the environment of a preprotein as it crosses the plasma membrane of Escherichia coli, unique cysteinyl residues were introduced into proOmpA and the genes for these mutant preproteins were fused to the gene of dihydrofolate reductase (Dhfr). A photoactivable, radiolabeled and reducible cross-linker was then attached to the unique cysteinyl residue of each purified protein. Partially translocated polypeptides were generated and arrested in their membrane transit by the folded structure of the dihydrofolate reductase domain. After photolysis to label their nearest neighbors and reduction of the disulfide bond between proOmpA-Dhfr and the cross-linker, radiolabeled cross-linker was selectively recovered with the SecA and SecY subunits of preprotein translocase. Strikingly, neither the SecE nor Band 1 subunits were cross-linked to any of the constructs and the membrane phospholipids were almost entirely shielded from cross-linking. The fact that SecY and SecA are the only membrane proteins cross-linked to the translocating chains suggests that they may form an entirely proteinaceous pathway through which secreted proteins pass during membrane transit.  相似文献   

2.
3.
4.
Various impact models have been used to study the injury mechanics of blunt trauma to diarthrodial joints. The current study was designed to study the relationship between impactor energy and mass on impact biomechanics and injury modalities for a specific test condition and protocol. A total of 48 isolated canine knees were impacted once with one of three free flight inertial masses (0.7, 1.5, or 4.8 kg) at one of three energy levels (2, 11, 22 J). Joint impact biomechanics (peak load, loading rate, contact area) generally increased with increasing energy. Injuries were typically more frequent and more severe with the larger mass at each energy level. Histological analyses of the patellae revealed cartilage injuries at low energy with deep injuries in underlying bone at higher energies.  相似文献   

5.
The basolateral complex of the amygdala (BLA) is a critical component of the neural circuit regulating fear learning. During fear learning and recall, the amygdala and other brain regions, including the hippocampus and prefrontal cortex, exhibit phase-locked oscillations in the high delta/low theta frequency band (~2-6 Hz) that have been shown to contribute to the learning process. Network oscillations are commonly generated by inhibitory synaptic input that coordinates action potentials in groups of neurons. In the rat BLA, principal neurons spontaneously receive synchronized, inhibitory input in the form of compound, rhythmic, inhibitory postsynaptic potentials (IPSPs), likely originating from burst-firing parvalbumin interneurons. Here we investigated the role of compound IPSPs in the rat and rhesus macaque BLA in regulating action potential synchrony and spike-timing precision. Furthermore, because principal neurons exhibit intrinsic oscillatory properties and resonance between 4 and 5 Hz, in the same frequency band observed during fear, we investigated whether compound IPSPs and intrinsic oscillations interact to promote rhythmic activity in the BLA at this frequency. Using whole-cell patch clamp in brain slices, we demonstrate that compound IPSPs, which occur spontaneously and are synchronized across principal neurons in both the rat and primate BLA, significantly improve spike-timing precision in BLA principal neurons for a window of ~300 ms following each IPSP. We also show that compound IPSPs coordinate the firing of pairs of BLA principal neurons, and significantly improve spike synchrony for a window of ~130 ms. Compound IPSPs enhance a 5 Hz calcium-dependent membrane potential oscillation (MPO) in these neurons, likely contributing to the improvement in spike-timing precision and synchronization of spiking. Activation of the cAMP-PKA signaling cascade enhanced the MPO, and inhibition of this cascade blocked the MPO. We discuss these results in the context of spike-timing dependent plasticity and modulation by neurotransmitters important for fear learning, such as dopamine.  相似文献   

6.
T cell expression of class II MHC/peptide complexes may be important for maintenance of peripheral self-tolerance, but mechanisms underlying the genesis of class II MHC glycoproteins on T cells are not well resolved. T cell APC (T-APC) used herein were transformed IL-2-dependent clones that constitutively synthesized class II MHC glycoproteins. When pulsed with myelin basic protein (MBP) and injected into Lewis rats, these T-APC reduced the severity of experimental autoimmune encephalomyelitis, whereas unpulsed T-APC were without activity. Normal MBP-reactive clones cultured without APC did not express class II MHC even when activated with mitogens and exposed to IFN-gamma. However, during a 4-h culture with T-APC or macrophage APC, recognition of MBP or mitogenic activation of responder T cells elicited high levels of I-A and I-E expression on responders. Acquisition of class II MHC glycoproteins by responders was resistant to the protein synthesis inhibitor cycloheximide, coincided with transfer of a PKH26 lipophilic dye from APC to responders, and resulted in the expression of syngeneic and allogeneic MHC glycoproteins on responders. Unlike rested I-A- T cell clones, rat thymic and splenic T cells expressed readily detectable levels of class II MHC glycoproteins. When preactivated with mitogens, naive T cells acquired APC-derived MHC class II molecules and other membrane-associated proteins when cultured with xenogeneic APC in the absence of Ag. In conclusion, this study provides evidence that APC donate membrane-bound peptide/MHC complexes to Ag-specific T cell responders by a mechanism associated with the induction of tolerance.  相似文献   

7.
Retinae of blowflies (Lucilia sp.) were exposed to light for 12 h and then investigated by routine electron microscopy. Residual bodies and multi-vesicular bodies containing electron-dense structures were found in the photoreceptor cells. These structures appeared indistinguishable from material inside the pigment granules of secondary pigment cells. The residual bodies were found in interdigitations between photoreceptor and pigment cells and were often in close contact with mitochondria. Lamellar bodies and pigment granules were also found in the extracellular space between photoreceptor and pigment cells. In a second set of experiments, a membrane-impermeable reagent [sulfosuccinimidyl-6-(biotinamido) hexanoate] that should covalently biotinylate the surface of the photosensory membrane was introduced into the ommatidial cavity. The marker was detected, 4 h after application, inside the ommatidial cavity, on the rhabdomeric microvilli, and on residual bodies inside the photoreceptor cells, by streptavidin-gold binding on ultrathin sections. After 6 h of exposure to the reagent, pigment granules of the adjacent pigment cells were also labeled. The results suggest that the photosensory membrane is taken up and degraded together with the marker. Residual bodies resulting from this degradative process may thus be transported into the pigment cells; eventually material originating from photosensory membrane degradation may then be involved in pigment granule synthesis.  相似文献   

8.
Epithelial sodium channels (ENaC) are expressed in the apical membrane of high resistance Na(+) transporting epithelia and have a key role in regulating extracellular fluid volume and the volume of airway surface liquids. Maturation and activation of ENaC subunits involves furin-dependent cleavage of the ectodomain at two sites in the alpha subunit and at a single site within the gamma subunit. We now report that the serine protease prostasin further activates ENaC by inducing cleavage of the gamma subunit at a site distal to the furin cleavage site. Dual cleavage of the gamma subunit is predicted to release a 43-amino acid peptide. Channels with a gamma subunit lacking this 43-residue tract have increased activity due to a high open probability. A synthetic peptide corresponding to the fragment cleaved from the gamma subunit is a reversible inhibitor of endogenous ENaCs in mouse cortical-collecting duct cells and in primary cultures of human airway epithelial cells. Our results suggest that multiple proteases cleave ENaC gamma subunits to fully activate the channel.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein is an emerging target for the development of anti-HIV drugs. We recently described a new approach for inhibiting IN by “shiftides”—peptides that inhibit the protein by shifting its oligomerization equilibrium from the active dimer to the inactive tetramer. In this study, we used the yeast two-hybrid system with the HIV-1 IN as a bait and a combinatorial peptide aptamer library as a prey to select peptides of 20 amino acids that specifically bind IN. Five non-homologous peptides, designated as IN-1 to IN-5, were selected. ELISA studies confirmed that IN binds the free peptides. All the five peptides interact with IN with comparable affinity (Kd≈10 μM), as was revealed by fluorescence anisotropy studies. Only one peptide, IN-1, inhibited the enzymatic activity of IN in vitro and the HIV-1 replication in cultured cells. In correlation, fluorescence anisotropy binding experiments revealed that of the five peptides, only the inhibitory IN-1 inhibited the DNA binding of IN. Analytical gel filtration experiments revealed that only the IN-1 and not the four other peptides shifted the oligomerization equilibrium of IN towards the tetramer. Thus, the results show a distinct correlation between the ability of the selected peptides to inhibit IN activity and that to shift its oligomerization equilibrium.  相似文献   

10.
Phospholipase A(2) (PLA(2)) (E. C. 3.1.1.4) is a common enzyme in the two-way cascade mechanism leading to the production of proinflammatory compounds known as eicosanoids. The binding of phospholipase A(2) to the membrane surface and hydrolysis of phospholipids are thought to involve the formation of a hydrophobic channel into which a single substrate molecule diffuses before its cleavage. To regulate the production of proinflammatory compounds, a specific peptide inhibitor Val-Ala-Phe-Arg-Ser (VAFRS) for the group I PLA(2) enzymes has been designed and synthesized. PLA(2) was isolated from Indian cobra (Naja naja sagittifera) venom and purified to homogeneity. The binding studies indicated the K(i) value of 1.02 +/- 0.10 x 10(-8) M. The purified PLA(2) samples and the designed inhibitor VAFRS were cocrystallized. The crystal structure of the complex was determined and refined to 1.9 A resolution. The peptide binds to PLA(2) at the active site and fills the hydrophobic channel completely. However, its placement with respect to the channel is in the opposite direction as compared to those observed in group II PLA(2)'s. Furthermore, the predominant intermolecular interactions involve strong electrostatic interactions between the side chains of peptide Arg and Asp 49 of PLA(2) together with a number of van der Waals interactions with other residues. A good number of observed interactions between the peptide and the protein indicate the significance of a structure-based drug design approach. The novel factor in the present sequence of the peptide is related to the introduction of a positively charged residue at the C-terminal part of the peptide.  相似文献   

11.
Complement receptor-type 1 (CR1, CD35) is the immune-adherence receptor, a complement regulator, and an erythroid receptor for Plasmodium falciparum during merozoite invasion and subsequent rosette formation involving parasitized and non-infected erythrocytes. The non-uniform geographical distribution of Knops blood group CR1 alleles Sl1/2 and McCa/b may result from selective pressures exerted by differential exposure to infectious hazards. Here, four variant short recombinant versions of CR1 were produced and analyzed, focusing on complement control protein modules (CCPs) 15–25 of its ectodomain. These eleven modules encompass a region (CCPs 15–17) key to rosetting, opsonin recognition and complement regulation, as well as the Knops blood group polymorphisms in CCPs 24–25. All four CR1 15–25 variants were monomeric and had similar axial ratios. Modules 21 and 22, despite their double-length inter-modular linker, did not lie side-by-side so as to stabilize a bent-back architecture that would facilitate cooperation between key functional modules and Knops blood group antigens. Indeed, the four CR1 15–25 variants had virtually indistinguishable affinities for immobilized complement fragments C3b (K D = 0.8–1.1 µM) and C4b (K D = 5.0–5.3 µM). They were all equally good co-factors for factor I-catalysed cleavage of C3b and C4b, and they bound equally within a narrow affinity range, to immobilized C1q. No differences between the variants were observed in assays for inhibition of erythrocyte invasion by P. falciparum or for rosette disruption. Neither differences in complement-regulatory functionality, nor interactions with P. falciparum proteins tested here, appear to have driven the non-uniform geographic distribution of these alleles.  相似文献   

12.
Wang Q  Wang J  Cai Z  Xu W 《Biophysical chemistry》2008,134(3):178-184
BB-83698 is a first potent inhibitor of peptide deformylase in this novel class to enter clinical trials. In this study, automated docking, molecular dynamics simulation and binding free energy calculations with the linear interaction energy (LIE) method are first applied to investigate the binding of BB-83698 to the peptide deformylase from Bacillus stearothermophilus. The lowest docking energy structure from each cluster is selected as different representative binding modes. Compared with the experimental data, the results show that the binding of BB-83698 in Mode 1 is the most stable, with a binding free energy of -41.35 kJ/mol. The average structure of the Mode 1 complex suggests that inhibitor interacts with Ile59 and Gly109 by hydrogen bond interaction and with Pro47, Pro57, Ile59 and Leu146 by hydrophobic interaction are essential for the activity of BB-83698. Mode 2 represents a new binding mode. Additionally, if the hydrophilic group is introduced to the benzo-[1,3]-dioxole ring, the binding affinity of BB-83698 to the peptide deformylase from B. stearothermophilus will be greatly improved.  相似文献   

13.
In vertebrates, fibrinolysis is primarily carried out by the serine protease plasmin (Pm), which is derived from activation of the zymogen precursor, plasminogen (Pg). One of the most distinctive features of Pg/Pm is the presence of five homologous kringle (K) domains. These structural elements possess conserved Lys-binding sites (LBS) that facilitate interactions with substrates, activators, inhibitors and receptors. In human Pg (hPg), K2 displays weak Lys affinity, however the LBS of this domain has been implicated in an atypical interaction with the N-terminal region of a bacterial surface protein known as PAM (Pg-binding group A streptococcal M-like protein). A direct correlation has been established between invasiveness of group A streptococci and their ability to bind Pg. It has been previously demonstrated that a 30-residue internal peptide (VEK-30) from the N-terminal region of PAM competitively inhibits binding of the full-length parent protein to Pg. We have attempted to determine the effects of this ligand–protein interaction on the regulation of Pg zymogen activation and conformation. Our results show minimal effects on the sedimentation velocity coefficients (S°20,w) of Pg when associated to VEK-30 and a direct relationship between the concentration of VEK-30 or PAM and the activation rate of Pg. These results are in contrast with the major conformational changes elicited by small-molecule activators of Pg, and point towards a novel mechanism of Pg activation that may underlie group A streptococcal (GAS) virulence.  相似文献   

14.
The initial events in protein aggregation involve fluctuations that populate monomer conformations, which lead to oligomerization and fibril assembly. The highly populated structures, driven by a balance between hydrophobic and electrostatic interactions in the protease-resistant wild-type Aβ21-30 peptide and mutants E22Q (Dutch), D23N (Iowa), and K28N, are analyzed using molecular dynamics simulations. Intrapeptide electrostatic interactions were connected to calculated pKa values that compare well with the experimental estimates. The pKa values of the titratable residues show that E22 and D23 side chains form salt bridges only infrequently with the K28 side chain. Contacts between E22-K28 are more probable in “dried” salt bridges, whereas D23-K28 contacts are more probable in solvated salt bridges. The strength of the intrapeptide hydrophobic interactions increases as D23N < WT < E22Q < K28A. Free-energy profiles and disconnectivity representation of the energy landscapes show that the monomer structures partition into four distinct basins. The hydrophobic interactions cluster the Aβ21-30 peptide into two basins, differentiated by the relative position of the DVG(23-25) and GSN(25-27) fragments about the G25 residue. The E22Q mutation increases the population with intact VGSN turn compared to the wild-type (WT) peptide. The increase in the population of the structures in the aggregation-prone Basin I in E22Q, which occurs solely due to the difference in charge states between the Dutch mutant and the WT, gives a structural explanation of the somewhat larger aggregation rate in the mutant. The D23N mutation dramatically reduces the intrapeptide interactions. The K28A mutation increases the intrapeptide hydrophobic interactions that promote population of structures in Basin I and Basin II whose structures are characterized by hydrophobic interaction between V24 and K28 side chains but with well-separated ends of the backbone atoms in the VGSN turn. The intrapeptide electrostatic interactions in the WT and E22Q peptides roughen the free-energy surface compared to the K28A peptide. The D23N mutation has a flat free-energy surface, corresponding to an increased population of random coil-like structures with weak hydrophobic and electrostatic interactions. We propose that mutations or sequences that enhance the probability of occupying Basin I would promote aggregation of Aβ peptides.  相似文献   

15.
Actin-activated Mg2+-ATPase activity of myosin II from Acanthamoeba castellanii is regulated by phosphorylation of three serine residues located at the carboxyl-terminal end of each of the two 185,000-Da heavy chains; the phosphorylated molecule has full Ca2+-ATPase activity but no actin-activated Mg2+-ATPase activity. Under controlled conditions, chymotrypsin removes a small peptide containing all three phosphorylation sites from the ends of the myosin II heavy chains producing a molecule with heavy chains of 175,000 Da and undigested light chains. The length of the myosin II tail decreased from 89 to 76 nm. Chymotrypsin-cleaved myosin II has complete Ca2+-ATPase activity but no actin-activated Mg2+-ATPase activity under standard assay conditions and binds to F-actin as well as undigested myosin II in the absence, but not in the presence, of MgATP. In the presence of MgCl2, undigested myosin II forms biopolar filaments but chymotrypsin-cleaved myosin II forms only parallel (monopolar) dimers, as assessed by analytical ultra-centrifugation and rotary shadow electron microscopy. We conclude that the short segment very near the end of the myosin II tail that contains the three phosphorylatable serines is necessary for the formation of biopolar filaments and, probably as a consequence of filament formation, for the high-affinity binding of myosin II to F-actin in the presence of ATP and the actin-activated Mg2+-ATPase activity of native myosin II. This supports our previous conclusion that actin-activated Mg2+-ATPase of native myosin II is expressed only when the enzyme is in bipolar filaments with the proper conformation as determined by the state of phosphorylation of the heavy chains.  相似文献   

16.
17.
We studied the induction of protease activity by the laminin alpha1-derived peptide AG73 in cells from adenoid cystic carcinoma (CAC2) and myoepithelioma (M1), respectively a malignant and a benign salivary gland tumors. Laminin alpha1 chain and MMP9 were immunolocalized in adenoid cystic carcinoma and myoepithelioma in vivo and in vitro. Cells grown inside AG73-enriched laminin-111 exhibited large spaces in the extracellular matrix, suggestive of remodeling. The broad spectrum MMP inhibitor GM6001 decreased spaces induced by AG73 in CAC2 and M1 cells. This result strongly suggests that AG73-mediated matrix remodeling involves matrix metalloproteinases. CAC2 and M1 cells cultured on AG73 showed a dose-dependent increase of MMP9 secretion, as detected by zymography. Furthermore, siRNA silencing of MMP9 decreased remodeling in 3D cultures. We searched for AG73 receptors regulating MMP9 activity in our cell lines. CAC2 and M1 cells grown on AG73 exhibited colocalization of syndecan-1 and beta1 integrin. siRNA knockdown of syndecan-1 expression in these cells resulted in decreased adhesion to AG73 and reduced protease and remodeling activity. We investigated syndecan-1 co-receptors in both cell lines. Silencing beta1 integrin inhibited adhesion to AG73, matrix remodeling and protease activity. Double-knockdown experiments were carried out to further explore syndecan-1 and beta1 integrin cooperation. CAC2 cells transfected with both syndecan-1 and beta1 integrin siRNA oligos showed significant decrease in adhesion to AG73. Simultaneous silencing of receptors also induced a decrease in protease activity. Our results suggest that syndecan-1 and beta1 integrin signaling downstream of AG73 regulate adhesion and MMP production by CAC2 and M1 cells.  相似文献   

18.
In the present work, we study the structure and the orientation of the 23 N-terminal peptide of the HIV-1 gp 41 protein (AVGIGALFLGFLGAAGSTMGARS) called FP23. The behaviour of FP23 was investigated alone at the air/water interface and inserted into various lipid model systems: in monolayer or multibilayers of a DOPC/cholesterol/DOPE/DOPG (6/5/3/2) and in a DMPC bilayer. PMIRRAS and polarized ATR spectroscopy coupled with Brewster angle microscopy and spectral simulations were used to precisely determine the structure and the orientation of the peptide in its environment as well as the lipid perturbations induced by the FP23 insertion. The infra-red results show the structural polymorphism of the FP23 and its ability to transit quasi irreversibly from an α-helix to antiparallel β-sheets. At the air/water interface, the transition is induced by compression of the peptide alone and is modulated by compression and lipid to peptide ratio (Ri) when FP23 is inserted into a lipid monolayer. In multibilayers and in a single bilayer, there is coexistence in quasi equal proportions of α-helix and antiparallel β-sheets of FP23 at low peptide content (Ri = 100, 200) while antiparallel β-sheets are predominant at high FP23 concentration (Ri = 50). In (multi)bilayer systems, evaluation of dichroic ratios and sprectral simulations show that both the α-helix and the antiparallel β-sheets are tilted at diluted FP23 concentrations (tilt angle of α-helix with respect to the normal of the interface = 36.5 ± 3.0° for FP23 in multibilayers of DOPC/Chol/DOPE/DOPG at Ri = 200 and 39.0 ± 5.0° in a single bilayer of DMPC at Ri = 100 and tilt angle of the β-sheets = 36.0 ± 2.0° for the β-sheets in multibilayers and 30.0 ± 2.0° in the lipid bilayer). In parallel, the FP23 induces an increase of the lipid chain disorder which shows both by an increase of the methylene stretching frequencies and an increase of the average C-C-C angle of the acyl chains. At high FP23 content (Ri = 50), the antiparallel β-sheets induce a complete disorganization of the lipid chains in (multi)bilayers.  相似文献   

19.
In the present work, we study the structure and the orientation of the 23 N-terminal peptide of the HIV-1 gp 41 protein (AVGIGALFLGFLGAAGSTMGARS) called FP23. The behaviour of FP23 was investigated alone at the air/water interface and inserted into various lipid model systems: in monolayer or multibilayers of a DOPC/cholesterol/DOPE/DOPG (6/5/3/2) and in a DMPC bilayer. PMIRRAS and polarized ATR spectroscopy coupled with Brewster angle microscopy and spectral simulations were used to precisely determine the structure and the orientation of the peptide in its environment as well as the lipid perturbations induced by the FP23 insertion. The infra-red results show the structural polymorphism of the FP23 and its ability to transit quasi irreversibly from an alpha-helix to antiparallel beta-sheets. At the air/water interface, the transition is induced by compression of the peptide alone and is modulated by compression and lipid to peptide ratio (Ri) when FP23 is inserted into a lipid monolayer. In multibilayers and in a single bilayer, there is coexistence in quasi equal proportions of alpha-helix and antiparallel beta-sheets of FP23 at low peptide content (Ri=100, 200) while antiparallel beta-sheets are predominant at high FP23 concentration (Ri=50). In (multi)bilayer systems, evaluation of dichroic ratios and sprectral simulations show that both the alpha-helix and the antiparallel beta-sheets are tilted at diluted FP23 concentrations (tilt angle of alpha-helix with respect to the normal of the interface=36.5+/-3.0 degrees for FP23 in multibilayers of DOPC/Chol/DOPE/DOPG at Ri=200 and 39.0+/-5.0 degrees in a single bilayer of DMPC at Ri=100 and tilt angle of the beta-sheets=36.0+/-2.0 degrees for the beta-sheets in multibilayers and 30.0+/-2.0 degrees in the lipid bilayer). In parallel, the FP23 induces an increase of the lipid chain disorder which shows both by an increase of the methylene stretching frequencies and an increase of the average C-C-C angle of the acyl chains. At high FP23 content (Ri=50), the antiparallel beta-sheets induce a complete disorganization of the lipid chains in (multi)bilayers.  相似文献   

20.
The crystal structures of the group II chaperonins consisting of the alpha subunit with amino acid substitutions of G65C and/or I125T from the hyperthermophilic archaeum Thermococcus strain KS-1 were determined. These mutants have been shown to be active in ATP hydrolysis but inactive in protein folding. The structures were shown to be double-ring hexadecamers in an extremely closed form, which was consistent with the crystal structure of native alpha8beta8-chaperonin from Thermoplasma acidophilum. Comparisons of the present structures with the atomic structures of the GroEL14-GroES7-(ADP)7 complex revealed that the deficiency in protein-folding activity with the G65C amino acid substitution is caused by the steric hindrance of the local conformational change in an equatorial domain. We concluded that this mutant chaperonin with G65C substitution is deprived of the smooth conformational change in the refolding-reaction cycle. We obtained a new form of crystal with a distinct space group at a lower concentration of sulfate ion in the presence of nucleotide. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion. Such subunit rotation has never been characterized in group II chaperonins. The crystal structure obtained at the lower concentration of sulfate ion tilts outward, and has much looser inter-subunit contacts compared with those in the presence of a higher concentration of sulfate ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号