首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The gene encoding the tetraheme cytochrome c(3) from Desulfovibrio gigas was cloned and sequenced from a 2.7-kb EcoRI-PstI insert of D. gigas DNA. The derived amino acid sequence showed that the D. gigas cytochrome c(3) is synthesized as a precursor protein with an N-terminal signal peptide sequence of 25 residues and allowed the correction of the previous reported amino acid sequence (Matias et al. Protein Science 5 (1996) 1342-1354). Expression in D. vulgaris (Hildenborough) was possible by conjugal transfer of a recombinant broad-host-range vector pSUP104 containing a SmaI fragment of the D. gigas cytochrome c(3) gene. Biochemical, immunological and spectroscopic analysis of the purified protein showed that the recombinant cytochrome is identical to that isolated from D. gigas.  相似文献   

2.
The gene encoding cytochrome c553 from Desulfovibrio vulgaris Hildenborough was cloned by using two synthetic deoxyoligonucleotide probes. The amino acid sequence derived from the sequence of the gene differs from that reported by Bruschi and LeGall (Biochim. Biophys. Acta 271:48-60, 1972). Renewed protein sequencing confirmed the correctness of the DNA-derived sequence. The gene sequence indicates cytochrome c553 to be synthesized as a precursor protein with an NH2-terminal signal sequence of 24 residues.  相似文献   

3.
By using a synthetic deoxyoligonucleotide probe designed to recognize the structural gene for cytochrome cc3 from Desulfovibrio vulgaris Hildenborough, a 3.7-kb XhoI genomic DNA fragment containing the cc3 gene was isolated. The gene encodes a precursor polypeptide of 58.9 kDa, with an NH2-terminal signal sequence of 31 residues. The mature polypeptide (55.7 kDa) has 16 heme binding sites of the form C-X-X-C-H. Covalent binding of heme to these 16 sites gives a holoprotein of 65.5 kDa with properties similar to those of the high-molecular-weight cytochrome c (Hmc) isolated from the same strain by Higuchi et al. (Y. Higuchi, K. Inaka, N. Yasuoka, and T. Yagi, Biochim. Biophys. Acta 911:341-348, 1987). Since the data indicate that cytochrome cc3 and Hmc are the same protein, the gene has been named hmc. The Hmc polypeptide contains 31 histidinyl residues, 16 of which are integral to heme binding sites. Thus, only 15 of the 16 hemes can have bis-histidinyl coordination. A comparison of the arrangement of heme binding sites and coordinated histidines in the amino acid sequences of cytochrome c3 and Hmc from D. vulgaris Hildenborough suggests that the latter contains three cytochrome c3-like domains. Cloning of the D. vulgaris Hildenborough hmc gene into the broad-host-range vector pJRD215 and subsequent conjugational transfer of the recombinant plasmid into D. desulfuricans G200 led to expression of a periplasmic Hmc gene product with covalently bound hemes.  相似文献   

4.
Abstract The gene encoding flavodoxin from Desulfovibrio vulgaris Hildenborough (148 amino acid residues), the first flavoprotein for which a three-dimensional structure has been determined, was cloned with the use of two synthetic oligonucleotides, designed to recognize the coding sequence for amino acid residues 11–19 and 98–103, respectively. The two oligonucleotides were used to screen a library of 900 λ-clones of the D. vulgaris chromosome. A single clone, λFL1, reacting with both probes was isolated. The entire structural gene for flavodoxin is contained in the 15 kb insert of λFL1 as found by nucleic acid sequencing. The codon usage in the flavodoxin gene is strongly biased towards G or C in the third codon position. A table in which codon usage information from all genes of D. vulgaris sequenced to date is combined is presented and should facilitate further gene cloning with oligonucleotide probes.  相似文献   

5.
The periplasmically located cytochrome c553i of Paracoccus denitrificans was purified from cells grown aerobically on choline as the carbon source. The purified protein was digested with trypsin to obtain several protein fragments. The N-terminal regions of these fragments were sequenced. On the basis of one of these sequences, a mix of 17-mer oligonucleotides was synthesized. By using this mix as a probe, the structural gene encoding cytochrome c553i (cycB) was isolated. The nucleotide sequence of this gene was determined from a genomic bank. The N-terminal region of the deduced amino acid sequence showed characteristics of a signal sequence. Based on the deduced amino acid sequence of the mature protein, the calculated molecular weight is 22,427. The gene encoding cytochrome c553i was mutated by insertion of a kanamycin resistance gene. As a consequence of the mutation, cytochrome c553i was absent from the periplasmic protein fraction. The mutation in cycB resulted in a decreased maximum specific growth rate on methanol, while the molecular growth yield was not affected. Growth on methylamine or succinate was not affected at all. Upstream of cycB the 3' part of an open reading frame (ORF1) was identified. The deduced amino acid sequence of this part of ORF1 showed homology with methanol dehydrogenases from P. denitrificans and Methylobacterium extorquens AM1. In addition, it showed homology with other quinoproteins like alcohol dehydrogenase from Acetobacter aceti and glucose dehydrogenase from both Acinetobacter calcoaceticus and Escherichia coli. Immediately downstream from cycB, the 5' part of another open reading frame (ORF2) was found. The deduced amino acid sequence of this part of ORF2 showed homology with the moxJ gene products from P. denitrificans and M. extorquens AM1.  相似文献   

6.
The nucleotide sequence of the 4.7-kb SalI/EcoRI insert of plasmid pHV 15 containing the hydrogenase gene from Desulfovibrio vulgaris (Hildenborough) has been determined with the dideoxy chain-termination method. The structural gene for hydrogenase encodes a protein product of molecular mass 45820 Da. The NH2-terminal sequence of the enzyme deduced from the nucleic acid sequence corresponds exactly to the amino acid sequence determined by Edman degradation. The nucleic acid sequence indicates that a N-formylmethionine residue precedes the NH2-terminal amino acid Ser-1. There is no evidence for a leader sequence. The NH2-terminal part of the hydrogenase shows homology to the bacterial [8Fe-8S] ferredoxins. The sequence Cys-Ile-Xaa-Cys-Xaa-Xaa-Cys-Xaa-Xaa-Xaa-Cys-Pro-Xaa-Xaa-Ala-(Ile) occurs twice both in the hydrogenase and in [8Fe-8S] ferredoxins, where the Cys residues have been shown to coordinate two [4Fe-4S] clusters [Adman, E. T., Sieker, L. C. and Jensen, L. H. (1973) J. Biol. Chem. 248, 3987-3996]. These results, therefore, suggest that two electron-transferring ferredoxin-like [4Fe-4S] clusters are located in the NH2-terminal segment of the hydrogenase molecule. There are ten more Cys residues but it is not clear which four of these could participate in the formation of the third cluster, which is thought to be the hydrogen binding centre. Another gene, encoding a protein of molecular mass 13493 Da, was found immediately downstream from the gene for the 46-kDa hydrogenase. The nucleic acid sequence suggests that the hydrogenase and the 13.5-kDa protein belong to a single operon and are coordinately expressed. Since dodecylsulfate gel electrophoresis of purified hydrogenase indicates the presence of a 13.5-kDa polypeptide in addition to the 46-kDa component, it is proposed that the hydrogenase from D. vulgaris (Hildenborough) is a two-subunit enzyme.  相似文献   

7.
The gene coding for the flavodoxin protein from Desulfovibrio vulgaris (Hildenborough) has been identified, cloned, and sequenced. DNA fragments containing the flavodoxin gene were identified by hybridization of a mixed synthetic heptadecanucleotide probe to Southern blots of SalI-digested genomic DNA. The nucleotide sequences of the probe were derived from the published protein primary structure (Dubourdieu, M., LeGall, J., and Fox, J. L. (1973) Biochem. Biophys. Res. Commun. 52, 1418-1425). The same oligonucleotide probe was used to screen libraries (in pUC19) containing size-selected SalI fragments. One recombinant, carrying a 1.6-kilobase (kb) insert which strongly hybridizes to the probe, was found to contain a nucleotide sequence which codes for the first 104 residues of the amino-terminal portion of the flavodoxin protein sequence but lacked the remainder of the gene. Therefore, a PstI restriction fragment from this clone was used as a probe to isolate the entire gene from a partial Sau3AI library in Charon 35. Of the plaques which continued to hybridize strongly to this probe through repeated screenings, one recombinant, containing a 16-kb insert, was further characterized. The entire flavodoxin gene was localized within a 1.4-kb XhoI-SacI fragment of this clone. The complete nucleotide sequence of the structural gene for the flavodoxin protein from Desulfovibrio vulgaris and flanking sequences which may include promoter and regulatory sequences are reported here. The cloned flavodoxin gene was placed behind the hybrid tac promoter for overexpression of the protein in Escherichia coli. Modification to the 5'-end of the gene, including substitutions at the second codon, were required to obtain high levels of expression. The expressed recombinant flavodoxin protein is isolated from E. coli cells as the holoprotein with physical and spectral properties similar to the protein isolated from D. vulgaris. To our knowledge, this is the first example of the expression of a foreign flavodoxin gene in E. coli using recombinant DNA methods.  相似文献   

8.
A nonaheme cytochrome c was purified to homogeneity from the soluble and the membrane fractions of the sulfate-reducing bacterium Desulfovibrio desulfuricans Essex. The gene encoding for the protein was cloned and sequenced. The primary structure of the multiheme protein was highly homologous to that of the nonaheme cytochrome c from D. desulfuricans ATCC 27774 and to that of the 16-heme HmcA protein from Desulfovibrio vulgaris Hildenborough. The analysis of the sequence downstream of the gene encoding for the nonaheme cytochrome c from D. desulfuricans Essex revealed an open reading frame encoding for an HmcB homologue. This operon structure indicated the presence of an Hmc complex in D. desulfuricans Essex, with the nonaheme cytochrome c replacing the 16-heme HmcA protein found in D. vulgaris. The molecular and spectroscopic parameters of nonaheme cytochrome c from D. desulfuricans Essex in the oxidized and reduced states were analyzed. Upon reduction, the pI of the protein changed significantly from 8.25 to 5.0 when going from the Fe(III) to the Fe(II) state. Such redox-induced changes in pI have not been reported for cytochromes thus far; most likely they are the result of a conformational rearrangement of the protein structure, which was confirmed by CD spectroscopy. The reactivity of the nonaheme cytochrome c toward [Ni,Fe] hydrogenase was compared with that of the tetraheme cytochrome c(3); both the cytochrome c(3) and the periplasmic [Ni,Fe] hydrogenase originated from D. desulfuricans Essex. The nonaheme protein displayed an affinity and reactivity toward [Ni,Fe] hydrogenase [K(M) = 20.5 +/- 0.9 microM; v(max) = 660 +/- 20 nmol of reduced cytochrome min(-1) (nmol of hydrogenase)(-1)] similar to that of cytochrome c(3) [K(M) = 12.6 +/- 0.7 microM; v(max) = 790 +/- 30 nmol of reduced cytochrome min(-1) (nmol of hydrogenase)(-1)]. This shows that nonaheme cytochrome c is a competent physiological electron acceptor for [Ni,Fe] hydrogenase.  相似文献   

9.
G Voordouw 《Gene》1988,67(1):75-83
A library of 900 recombinant phages has been constructed for the genome of Desulfovibrio vulgaris Hildenborough (1.7 x 10(6) bp) by cloning size-fractionated Sau3A fragments (15-20 kb) into the replacement vector lambda-2001. When a hydrogenase gene probe, a 4.7-kb SalI-EcoRI fragment of known nucleotide sequence, was used to screen the plaque lifted library, 23 positive clones were found, which together span 31 kb of D. vulgaris DNA. To facilitate the cloning of genes with oligodeoxynucleotides as probes, DNA was purified for all clones in the library and spotted on a 16 x 16-cm grid of nitrocellulose. This grid was incubated sequentially to identify lambda clones containing the gene for redox proteins of known amino acid sequence: cytochrome c3 (one 18-mer----four clones), flavodoxin (one 17-mer and one 26-mer----one clone) and rubredoxin (one 44-mer----21 clones). The four cyc-positive clones are also recognized by the rubredoxin oligodeoxynucleotide probe. Restriction mapping defines a 35-kb region of the D. vulgaris chromosome in which the rub and cyc loci are separated by 17.5 kb. The nucleotide sequence of the rubredoxin gene was determined and the deduced amino acid sequence found to agree with that determined in Bruschi [Biochim. Biophys. Acta 434 (1976) 4-17] with the exception of Thr-21 which is found to be encoded by GAC, an Asp codon. A plausible ribosome-binding site precedes the N-terminal initiator methionine residue. Rubredoxin does not have an N-terminal signal sequence which is in agreement with the cytoplasmic location of this redox protein.  相似文献   

10.
Restriction fragments of genomic DNA from Desulfovibrio salexigens (ATCC 14822) containing the structural gene coding for the flavodoxin protein were identified using the entire coding region of the gene for the Desulfovibrio vulgaris (Hildenborough) flavodoxin as a probe (Krey, G.D., Vanin, E.F., and Swenson, R.P. (1988) J. Biol. Chem. 263, 15436-15443). A 1.4-kb PstI-HindIII fragment was ultimately identified which contains an open reading frame coding for a polypeptide of 146 amino acid residues that was highly homologous to the D. vulgaris flavodoxin, sharing a sequence identity of 55%. When compared to the X-ray crystal structure of the D. vulgaris protein, the homologous regions were largely confined to those portions of the protein which are in the immediate vicinity of the flavin mononucleotide cofactor binding site. Tryptophan-60 and tyrosine-98, which reside on either side of the isoalloxazine ring of the cofactor, are conserved, as are the sequences of the polypeptide loop that interacts with the phosphate moiety of the flavin. Acidic residues forming the interface of model electron-transfer complexes with certain cytochrome c proteins are retained. The flavodoxin holoprotein is over-expressed in E. coli from the cloned gene using its endogenous promoter.  相似文献   

11.
The gene encoding cytochrome c3 (cyc-gene) from Desulfovibrio vulgaris (Hildenborough) was cloned by G. Voordouw and S. Brenner (1986, Eur. J. Biochem. 159, 347-351). The gene was expressed in Escherichia coli but only the apoprotein was observed (W. Pollock, P. Chemerika, M. Forrest, J. Beatty, and G. Voordouw, 1989, J. Gen. Microbiol. 135, 2319-2328). In this study, the cyc-gene was cloned into the broad host range vector pRK404 and then introduced into the purple photosynthetic bacterium Rhodobacter sphaeroides. Cells grown anaerobically produced a significant amount of recombinant cytochrome c3. The purified protein contains four hemes and the N-terminal protein sequence is identical to the published sequence of the native cytochrome c3. Thus, R. sphaeroides was able to produce the mature cytochrome c3 by combining the four steps of protein synthesis, exporting the protein across the membrane, cleaving the signal peptide, and inserting four hemes. It appears that the D. vulgaris promoter is not very efficiently used by R. sphaeroides. However, replacement of the promoter with a R. sphaeroides promoter should result in cytochrome c3 overproduction.  相似文献   

12.
The complete nucleotide sequence of the gene encoding the cytochrome subunit of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis, and the derived amino acid sequence are presented. The nucleotide sequence of the gene reveals the existence of a typical bacterial signal peptide of 20 amino acid residues which is not found in the mature cytochrome subunit. The gene encoding the cytochrome subunit is preceded by the gene encoding the M subunit. Both genes overlap by 1 bp. The mature cytochrome subunit consists of 336 amino acid residues; 73% of its amino acid sequence was confirmed by protein sequencing work. The mol. wt of the cytochrome subunit including the covalently bound fatty acids and the bound heme groups is 40 500. The internal sequence homology is low, despite the symmetric structure of the cytochrome subunit previously shown by X-ray crystallographic analysis of the intact photosynthetic reaction centre. Sequence homologies to other cytochromes were not found.  相似文献   

13.
Plasmid pJRDC800-1, containing the cyc gene encoding cytochrome c3 from Desulfovibrio vulgaris subsp. vulgaris Hildenborough, was transferred by conjugation from Escherichia coli DH5 alpha to Desulfovibrio desulfuricans G200. The G200 strain produced an acidic cytochrome c3 (pI = 5.8), which could be readily separated from the Hildenborough cytochrome c3 (pI = 10.5). The latter was indistinguishable from cytochrome c3 produced by D. vulgaris subsp. vulgaris Hildenborough with respect to a number of chemical and physical criteria.  相似文献   

14.
The expression of cytochrome c3 from Desulfovibrio vulgaris (Hildenborough) was examined in Escherichia coli transformed with either of two plasmids, pJ8 and pJ81. The former has an 840 bp insert of D. vulgaris DNA, containing the structural gene for cytochrome c3 (387 bp) and its promoter region. Plasmid pJ81 was generated from pJ8 by deoxyoligonucleotide-directed mutagenesis to direct the synthesis of a protein with an altered signal peptidase cleavage site [Ala(-1)----Asp(-1)]. Synthesis of the 14 kDa precursor, which was partly processed to the 12 kDa mature protein, was observed in cells of E. coli TG2(pJ8) by SDS gel electrophoresis and Western blotting. Analysis of spheroplasts revealed that the processed polypeptide was present in the periplasm while the precursor was found only in the membrane/cytoplasmic fraction. No processing was observed in E. coli TG2(pJ81) cells, due to the mutation of the signal peptide cleavage site. No insertion of haem into the E. coli product could be detected in E. coli TG2(pJ8) cells by post-electrophoretic protohaem fluorescence analysis. The sensitivity of the cytochrome c3 synthesized in E. coli TG2(pJ8) to digestion by chymotrypsin also indicated that the apoprotein was formed. The results indicate that E. coli is capable of synthesizing and exporting the cytochrome c3 polypeptide, but fails to insert the haems.  相似文献   

15.
The gene (coxII) encoding subunit II of Rhodobacter sphaeroides cytochrome c oxidase (cytochrome aa3) has been isolated by screening a genomic DNA library in phage lambda with a probe derived from coxII of Paracoccus denitrificans. A 2-kb fragment containing coxII DNA was subcloned into the phage M13mp18 and the sequence determined. The 2-kb insert contains the entire coding region for coxII gene, including the ATG start codon and a TGA stop codon. The deduced amino acid (aa) sequence of subunit II of R. sphaeroides shows regions of substantial homology to the corresponding subunit of the bovine mitochondrial oxidase (63% overall) and P. denitrificans oxidase (68% overall). The postulated redox-active copper ion (CuA) binding site involving two Cys and two His residues (as well as an alternative Met residue) is conserved among these species, along with four invariant acidic aa residues (two Asp and two Glu) that may be involved in interactions with cytochrome c, and a region of aromatic residues (Tyr-Gln-Trp-Tyr-Trp-Gly-Tyr-Glu-Tyr) which is postulated to play a role in electron transfer. Hydropathy profile analysis suggests that while the bovine COXII secondary structure contains two transmembrane helices, the R. sphaeroides subunit II has a third such helix that may function as part of a signal sequence, as suggested for P. denitrificans.  相似文献   

16.
17.
This study was initiated to gain further insight into the structural features of the mammalian fetuin family. The cDNA structures of sheep and pig fetuin were determined. The cDNA insert encoding sheep (pig) fetuin comprised 1550 (1470) nucleotides, including 54 (46) nucleotides encoding a signal peptide of 18 (15) residues and 1038 (1041) nucleotides encoding the 346 (347) amino acids of the mature plasma protein. The predicted amino-terminal sequence of the mature pig fetuin was confirmed by the amino-terminal sequence of the purified protein. However, two alternative sheep amino-terminal sequences were found in fetuin purified from the plasma of a single sheep fetus; the minor product was the one predicted by comparison with other fetuin sequences while the major product was two amino acids longer. Comparison of the deduced amino acid sequences of sheep and pig fetuin showed an extensive sequence identity between them (75%) and with other proteins of the mammalian fetuin family, i.e. human alpha 2-HS glycoprotein, and bovine and rat fetuins. Twelve cysteine residues were found at invariant positions in all fetuin sequences, suggesting strongly that the arrangement of disulphide bridges identified in human alpha 2-HS glycoprotein is common to the members of the family. Further sequence comparisons revealed that the structures of mammalian fetuins are organised in three domains: two cystatin-like domains (D1 and D2) and a complex carboxyl-terminal domain (D3). The proposed three-domain structure of the protein is reflected in the organisation of the rat fetuin structural gene which has recently been published.  相似文献   

18.
Contradicting early suggestions, the sequencing of the gene encoding the Desulfovibrio desulfuricans (ATCC 27774) nine-heme cytochrome c proves that this cytochrome is not the product of the degradation of the 16-heme containing cytochrome c [Coelho et al. (1996) Acta Cryst. D52, 1202-1208]. However, preliminary data indicate that the cytochrome gene is part of an operon similar to the DvH hmc operon, which contains the gene coding for the 16-heme cytochrome c [Rossi et al. (1993) J. Bacteriol. 175, 4699-4711]. Also, the amino acid sequence deduced from the DNA sequence shows four residues in the C-terminal not predicted in the amino acid sequence obtained by X-ray methods [Matias et al. (1999) Structure 7, 119-130].  相似文献   

19.
Cytochrome caa3, a cytochrome c oxidase from Thermus thermophilus, is a two-subunit enzyme containing the four canonical metal centers of cytochrome c oxidases (cytochromes a and a3; copper centers CuA and CuB) and an additional cytochrome c. The smaller subunit contains heme C and was termed the C-protein. We have cloned the genes encoding the subunits of the oxidase and determined the nucleotide sequence of the C-protein gene. The gene and deduced primary amino acid sequences establish that both the gene and the protein are fusions with a typical subunit II sequence and a characteristic cytochrome c sequence; we now call this subunit IIc. The protein thus appears to represent a covalent joining of substrate (cytochrome c) to its enzyme (cytochrome c oxidase). In common with other subunits II, subunit IIc contains two hydrophobic segments of amino acids near the amino terminus that probably form transmembrane helices. Variability analysis of the Thermus and other subunit II sequences suggests that the two putative transmembrane helices in subunit II may be located on the surface of the hydrophobic portion of the intact cytochrome oxidase protein complex. Also in common with other subunits II is a relatively hydrophilic intermembrane domain containing a set of conserved amino acids (2 cysteines and 2 histidines) which have previously been proposed by others to serve as ligands to the CuA center. We compared the subunit IIc sequence with that of related proteins. N2O reductase of Pseudomonas stutzeri, a multi-copper protein that appears to contain a CuA site (Scott, R.A., Zumft, W.G., Coyle, C.L., and Dooley, D.M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4082-4086), contains a 59-residue sequence element that is homologous to the "CuA sequence motif" found in cytochrome oxidase subunits II, including all four putative copper ligands. By contrast, subunit II of the Escherichia coli quinol oxidase, cytochrome bo, also contains a region homologous to the CuA motif, but it lacks the proposed metal binding histidine and cysteine residues; this is consistent with the apparent absence of CuA from cytochrome bo.  相似文献   

20.
Yeast cytochrome b2 gene: isolation with antibody probes   总被引:3,自引:0,他引:3  
B Guiard  J M Buhler 《Biochimie》1984,66(2):151-158
An efficient technique was used to clone the gene for yeast cytochrome b2, (a nuclear encoded mitochondrial protein) using the expression vector, lambda gt11 (lac 5 nin 5 c1857 S100). This enables the insertion of yeast DNA into the beta-galactosidase structural gene (lacZ) and promotes synthesis of hybrid proteins. Screening of antigen producing clones in the lambda gt11 recombinant genomic library was achieved using antiserum against cytochrome b2 according to Young and Davis (1983) Two recombinants containing part of the gene coding for cytochrome b2 were isolated and characterized as follows: by their expression in Escherichia coli cells, examined by immuno-blotting with antibodies to pure cytochrome b2. by DNA sequence analysis. One recombinant carries a 3 Kb yeast DNA insert which contains the whole nucleotide sequence encoding cytochrome b2 and a few amino acids of the amino terminal presequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号