首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of prostaglandin E2 (PGE2) and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), the stable metabolite of prostacyclin (PGI2), by the perfused mesenteric arteries of renal and spontaneously hypertensive rats (SHR) have been measured. Unstimulated mesenteric arteries from two-kidney one-clip hypertensive rats (2K-1C) released 1.6 times as much PGE2 and 2.7 times as much 6-keto-PGF1 alpha as those of control rats. The release of PGE2 by mesenteric arteries from one-kidney one-clip hypertensive rats (1K-1C) was not significantly different from that of uninephrectomized normotensive rats, but the release of 6-keto-PGF1 alpha was 3.5 times higher in the former than in the latter. Norepinephrine (NE) induced a dose-related increase in perfusion pressure, in PGE2, and 6-keto-PGF1 alpha release in all four groups. However, its effect on the release of PGE2 was more pronounced in 2K-1C than in sham-operated rats. There was no difference between 1K-1C and the uninephrectomized group. The effect of NE on the release of 6-keto-PGF1 alpha was significantly higher for both renal hypertensive groups. These results indicate that the release of PGE2 is more dependent on the loss of renal mass than on hypertension, while the reverse applies to the release of 6-keto-PGF1 alpha. Unstimulated mesenteric arteries from SHR released less PGE2 and less 6-keto-PGF1 alpha than those of Wistar-Kyoto normotensive rats (WKY), but the release was not significantly different from Wistar rats. Under NE stimulation, WKY mesenteric arteries showed almost no increase in release of PGs. Compared with those of Wistar rats, SHR mesenteric arteries showed a greater pressor response to NE, a lower PGE2 release, and the same release of 6-keto-PGF1 alpha. These findings reveal the difficulty of selecting an appropriate control group in studies involving SHR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The aim of this study was to show whether the decrease in blood pressure induced by Mg supplementation in deoxycorticosterone acetate - salt (DOCA-salt) hypertensive rats is associated with mechanical modifications of blood vessels and (or) changes in tissular production and (or) vasoconstrictor activity to endothelin-1. DOCA-salt treatment increased blood pressure, media thickness, cross-sectional area, and lumen diameter of carotid arteries. Distensibility and incremental elastic modulus versus stress were not altered in carotid arteries, suggesting that the DOCA-salt vessel wall adapts structurally to preserve its blood pressure buffering capacity. Magnesium supplementation attenuated DOCA-salt hypertension. In comparison with normotensive rats, systolic, mean, and pulse pressures were higher whereas diastolic pressure was not different in Mg-supplemented DOCA-salt rats. Magnesium supplementation did not significantly modify the elastic parameters of carotid arteries. In resistance mesenteric arteries, DOCA-salt hypertension induces an inward hypertrophic remodeling. Magnesium supplementation attenuates wall hypertrophy and increases lumen diameter to the normotensive diameter, suggesting a decrease in peripheral resistance. Magnesium supplementation normalizes the altered vasoconstrictor activity of endothelin-1 in mesenteric arteries and attenuates endothelin-1 overproduction in kidney, left ventricle, and aorta of DOCA-salt rats. These findings suggest that Mg supplementation prevents blood pressure elevation by attenuating peripheral resistance and by decreasing hypertrophic effect of endothelin-1 via inhibition of endothelin-1 production.  相似文献   

3.
Global cerebral ischemia (four vessel model) was induced in renovascular hypertensive rats (two kidney, one clip model) chronically treated with intraperitoneal administration of angiotensin I converting enzyme inhibitors, either captopril (100 mg/kg per day) or Wy-44,655 (10 mg/kg per day). Mortality following cerebral ischemia was higher in renovascular hypertensive rats than in normotensive controls. Reduction of blood pressure with captopril or Wy-44,655, lowered mortality. In surviving renovascular hypertensive and normotensive rats cerebral ischemia induced hyperactivity and lesions of the CA1 area of the hippocampus. Prolonged treatment with captopril--but not with Wy-44,655--reduced hyperactivity and the extent of the CA1 lesions. In conclusion, hypertension increases mortality following cerebral ischemia but does not affect the extent of brain injury in survivors. Prior treatment with converting enzyme inhibitors lowers mortality. Treatment with captopril attenuates brain injury in survivors.  相似文献   

4.
The aims of this study were to determine the contribution of the AT2 receptor to the antihypertensive and regional vasodilatory effects of AT1 receptor blockade in adult spontaneously hypertensive rats (SHR), 2-kidney, 1-clip hypertensive (2K1C) rats, and sham-operated normotensive rats. Several studies have provided evidence to support the notion that the AT2 receptor may have opposing effects to those mediated by the AT1 receptor. We therefore tested the hypothesis that the depressor and vasodilator effects of acute AT1 receptor blockade are dependent on AT2 receptor activation. Heart rate, mean arterial pressure, and regional hemodynamics were measured over a 4-day protocol in rats that received the following treatments in randomized order: saline vehicle, the AT1 receptor antagonist candesartan (0.1 mg/kg iv bolus), the AT2 receptor antagonist PD-123319 (50 microg.kg(-1).min(-1)), or both antagonists. Intravenous candesartan reduced mean arterial pressure in all groups of rats, and this was accompanied by renal and mesenteric vasodilation. Neither saline nor PD-123319 significantly affected these variables. Concomitant PD-123319 administration partially reversed the depressor and mesenteric vasodilator effects of candesartan in sham-operated normotensive rats but not in SHR or 2K1C rats. These data indicate that the AT2 receptor contributes to the blood pressure-lowering and mesenteric vasodilator effects of AT1 receptor blockade in the acute setting in conscious normotensive but not hypertensive rats.  相似文献   

5.
Different vascular models of normotensive Wistar rats, including aortic strips, isolated perfused mesentery and isolated perfused kidney, were used to study hemodynamic effects of plasma fractions obtained by gel filtration from the blood of essential hypertensive and normotensive subjects. Plasma fractions from essential hypertensives studied had been shown to increase blood pressure after intravenous injection in rats. In the aortic strips, 50 microliters of a hypertensive fraction (HF) elicited a calcium-dependent contraction of 0.14 +/- 0.035 mN (n = 20, p less than 0.05), which was inhibited by nifedipine, whereas tension of the strips was not significantly changed by normotensive fractions (NF) (n = 17). In the isolated perfused mesentery preparation, no significant change of perfusion pressure by HF or NF could be demonstrated (n = 10). In the isolated perfused kidney, a transient increase of perfusion pressure was induced by HF (19.5 +/- 16.6 mm Hg, n = 40, P less than 0.001) but not by NF. This increase was abolished in calcium-free, 2 mmol/l EGTA containing perfusion medium. The response was diminished, but not abolished by nifedipine. These data demonstrate vasopressor properties of plasma from essential hypertensives, which might be the consequence of a circulating vasoconstrictor substance in the blood of essential hypertensives.  相似文献   

6.
The present study describes a differential inhibitory effect of captopril and [Sar1 Ala8]angiotensin II (saralasin) on the neurogenic vasoconstriction in pithed normotensive rats. In pithed normotensive rats with intact kidneys captopril more profoundly inhibited the vasopressor response to spinal stimulation than observed for saralasin. Bilateral nephrectomy also diminished the hypertensive response to spinal stimulation. After bilateral nephrectomy, 1 h previously, captopril but not saralasin diminished the hypertensive response to spinal stimulation. After bilateral nephrectomy, 18-24 h previously, captopril did not produce an additional reduction of the vasopressor response to spinal stimulation. In contrast, saralasin significantly potentiated the neurogenic vasoconstriction. The results suggest that both captopril and saralasin diminish the hypertensive response to spinal stimulation by producing dilatation of vascular smooth muscle in pithed normotensive rats. Apart from this common mechanism, a differential effect of captopril and saralasin on the neurogenic vasoconstriction can be observed. In contrast to saralasin, captopril may depress the neurogenic vasoconstriction in pithed normotensive rats by blocking the sympathofacilitatory action induced by subpressor levels of angiotensin II (AII). In pithed normotensive rats, saralasin may mimic the sympathofacilitatory action of subpressor AII.  相似文献   

7.
Sympathetic overdrive, activation of renin angiotensin systems (RAS), and oxidative stress are vitally involved in the pathogenesis of hypertension and cardiovascular remodeling. We recently identified that vaccarin protected endothelial cell function from oxidative stress or high glucose. In this study, we aimed to investigate whether vaccarin attenuated hypertension and cardiovascular remodeling. Two‐kidney one‐clip (2K1C) model rats were used, and low dose of vaccarin (10 mg/kg), high dose of vaccarin (30 mg/kg), captopril (30 mg/kg) were intraperitoneally administrated. Herein, we showed that 2K1C rats exhibited higher systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), left ventricular mass/body weight ratio, myocardial hypertrophy or fibrosis, media thickness, and media thickness to lumen diameter, which were obviously alleviated by vaccarin and captopril. In addition, both vaccarin and captopril abrogated the increased plasma renin, angiotensin II (Ang II), norepinephrine (NE), and the basal sympathetic activity. The AT1R protein expressions, NADPH oxidase subunit NOX‐2 protein levels and malondialdehyde (MDA) content were significantly increased, whereas superoxide dismutase (SOD) and catalase (CAT) activities were decreased in myocardium, aorta, and mesenteric artery of 2K1C rats, both vaccarin and captopril treatment counteracted these changes in renovascular hypertensive rats. Collectively, we concluded that vaccarin may be a novel complementary therapeutic medicine for the prevention and treatment of hypertension. The mechanisms for antihypertensive effects of vaccarin may be associated with inhibition of sympathetic activity, RAS, and oxidative stress.  相似文献   

8.

Background and Purpose

We investigated whether pregnancy was associated with changed function in components of perivascular mesenteric innervation and the mechanism/s involved.

Experimental Approach

We used superior mesenteric arteries from female Sprague-Dawley rats divided into two groups: control rats (in oestrous phase) and pregnant rats (20 days of pregnancy). Modifications in the vasoconstrictor response to electrical field stimulation (EFS) were analysed in the presence/absence of phentolamine (alpha-adrenoceptor antagonist) or L-NAME (nitric oxide synthase-NOS- non-specific inhibitor). Vasomotor responses to noradrenaline (NA), and to NO donor DEA-NO were studied, NA and NO release measured and neuronal NOS (nNOS) expression/activation analysed.

Key Results

EFS induced a lower frequency-dependent contraction in pregnant than in control rats. Phentolamine decreased EFS-induced vasoconstriction in segments from both experimental groups, but to a greater extent in control rats. EFS-induced vasoconstriction was increased by L-NAME in arteries from both experimental groups. This increase was greater in segments from pregnant rats. Pregnancy decreased NA release while increasing NO release. nNOS expression was not modified but nNOS activation was increased by pregnancy. Pregnancy decreased NA-induced vasoconstriction response and did not modify DEA-NO-induced vasodilation response.

Conclusions and Implications

Neural control of mesenteric vasomotor tone was altered by pregnancy. Diminished sympathetic and enhanced nitrergic components both contributed to the decreased vasoconstriction response to EFS during pregnancy. All these changes indicate the selective participation of sympathetic and nitrergic innervations in vascular adaptations produced during pregnancy.  相似文献   

9.
Relaxin (RLX), an ovarian polypeptide hormone that is particularly associated with gestation in viviparous species, has recently been shown to decrease blood pressure in virgin spontaneously hypertensive rats (SHR) upon chronic infusion. In this investigation, vascular reactivity to angiotensin II, arginine-vasopressin, and norepinephrine was studied in the perfused mesenteric artery and isolated portal vein of control and RLX-treated virgin spontaneously hypertensive rats. The latter received an intravenous infusion of 75 ng/hr purified rat RLX for 2 days, whereas the controls were given an equal infusion of saline. All of the animals were then killed and their tissues processed for in vitro study. In the perfused mesenteric artery, the concentration-response curves for arginine-vasopressin and norepinephrine were shifted to the right by a factor of about 2 (P less than 0.05 and P less than 0.005, respectively) after RLX treatment. In the isolated portal vein, the response to angiotensin II was not affected; the effect of norepinephrine was slightly displaced to the right (increase in EC50) and the maximum response remained unchanged. These results demonstrate that RLX treatment for 42 hr blunted the vascular response to vasoconstrictor agents in the mesenteric vasculature and are consistent with similar observations reported previously in the same tissue of 20-day-old pregnant rats. It is concluded that RLX may be involved in the blunted response to vasoconstrictor agents during gestation in the rat.  相似文献   

10.
Recent studies have demonstrated that the feeding of low protein diets to rats during pregnancy induces hypertension in their offspring. Maternal-diet-induced hypertension has been previously associated with elevated pulmonary angiotensin converting enzyme (ACE) activity. In the present study, the importance of the renin angiotensin system, and in particular ACE, in the maintenance of the hypertensive state, is investigated. Pulmonary and plasma ACE activity were determined in rats of different ages, following in utero exposure to 18 (control) or 9% (deficient) casein diets. No maternal diet induced changes in pulmonary ACE were noted, but at 4 and 13 weeks of age, plasma ACE activity was increased by 34 and 134%, respectively in 9% casein exposed rats relative to controls (P<0.001). Thirteen-week-old rats had significantly raised systolic blood pressure (28 mmHg, P<00.05), and tended to have higher diastolic blood pressure (not significant). These hypertensive animals had slightly raised plasma angiotensin II concentrations (30% higher, not significant), but similar renin activities, when compared with normotensive controls. Treatment of normotensive and hypertensive rats with the ACE inhibitor captopril demonstrated that higher plasma ACE activity may play a major role in the maintenance of maternal-diet-induced hypertension. Whilst normotensive rats showed no significant response to drug treatment, systolic blood pressure in the hypertensive rats fell rapidly to the level observed in the normotensive control group. Blood pressure remained at this lower level until treatment was withdrawn, at which time pressure began to increase slowly, but steadily. A period of 7–8 weeks was required following cessation of captopril administration for the restoration of hypertension.The data are consistent with the hypothesis that components of the renin-angiotensin system, and in particular plasma ACE, are involved in the maintenance of maternal-diet-induced hypertension.  相似文献   

11.
The aim of this study was to evaluate the potential influence of endogenous ovarian hormones on cardiac oxidative stress in renovascular hypertension. Female Wistar rats (N = 10 per group) were divided among 4 groups: (i) normotensive control; (ii) hypertensive control; (iii) normotensive ovariectomized; and (iv) hypertensive ovariectomized rats. To induce hypertension, 2-kidney 1-clip (2K1C) Goldblatt's method was followed. Blood pressure (BP) was enhanced (25%) in 2K1C and it was not further altered in hypertensive ovariectomized animals. Lipid peroxidation (measured by thiobarbituric acid reactive substances; TBARS) increased in heart homogenates after ovariectomy (253%) and was additionally augmented when associated with hypertension (by 28%). Superoxide dismutase and catalase activities were similar in both hypertensive groups. Hypertension enhanced glutathione peroxidase activity (75%), but the association with ovariectomy prevented this change. Total radical trapping antioxidant potential (TRAP) decreased in hypertensive rats (34%) and was recovered when associated with ovariectomy. However, this adaptation seems not to be sufficient to avoid the increased oxidative damage in ovariectomized hypertensive animals. These results suggest a protective role for physiological ovarian hormones in the cardiac oxidative stress induced by 2K1C hypertension.  相似文献   

12.
Phosphatidylinositol 3-kinase (PI3K) is a signaling enzyme that plays key roles in vascular growth, proliferation, and cellular apoptosis and is implicated in modulating vascular smooth muscle contractility. The aim of this study was to determine whether PI3K contributes to development of diabetes-induced abnormal vascular reactivity to selected vasoactive agonists. The effect of 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002), a selective PI3K inhibitor, on isolated perfused mesenteric vascular bed from streptozotocin (STZ)-diabetic rats was investigated. Changes in perfusion pressure, which reflected peripheral resistance, were measured using isolated perfused mesenteric vascular beds. Our results showed that STZ treatment produced an increase in the vasoconstrictor response to norepinephrine (NE), angiotensin II (Ang II) and endothelin-1 (ET-1), and an attenuated vasodilator response to carbachol and histamine in the isolated perfused mesenteric vascular bed from STZ-diabetic animals. Chronic inhibition of PI3K with LY294002 resulted in prevention of diabetes-induced abnormal vascular reactivity to the vasoactive agonists. However, the high blood glucose levels were not normalized. Results of this study indicate that selective inhibition of PI3K can attenuate the development of diabetes-induced abnormal vascular responsiveness in the isolated perfused mesenteric vascular bed.  相似文献   

13.
14.
15.
We investigated the changes in arterial blood pressure (BP) and of mesenteric arterial bed (MAB) responsiveness that accompany streptozotocin (STZ)-induced diabetes. BP was recorded by radiotelemetry in conscious animals before and during a 4-week period following induction of the diabetic state with STZ. At the end of this period, the MAB was isolated and perfused under constant flow conditions: perfusion pressure (PP, mmHg) was taken as an index of arteriolar tone. BP was lower (P < 0.05) in STZ-treated diabetic rats (82.9+/-5.0 mmHg) than in vehicle-treated rats (108.9+/-6.3 mmHg). Basal perfusion pressure of the MAB was lower in STZ-treated rats than in control rats and inhibition of nitric oxide (NO) synthesis with N(G)-nitro-L-arginine-methyl-ester and N(G)-nitro-L-arginine (100 microM each) failed to change this relationship. Increases in PP of MAB to phenylephrine (Phe), norepinephrine (NE), and potassium chloride (KCl) were reduced in STZ-treated rats compared with control rats. Inhibition of NO synthesis reduced responses to Phe, NE, and KCL in both STZ and control rats. The reduced responsiveness of STZ rats to Phe, NE, and KCl persisted after inhibition of NO synthesis. Acetylcholine (ACh) evoked relaxation of the MAB in a dose-dependent fashion. Maximal responses to ACh, but not sodium nitroprusside, were lower in STZ rats than in vehicle treated rats. Inhibition of NO synthesis reduced responses to ACh in both STZ and control rats. The reduced responsiveness of STZ rats to ACh persisted after inhibition of NO synthesis. The data demonstrate that STZ-induced diabetes is associated with a fall in blood pressure when pressure is recorded with radiotelemetry. The fall in blood pressure may be related to a non-specific decrease in responsiveness to vasoconstrictor stimuli mediated at least in part by NO-independent mechanisms. A decrease in responsiveness to endothelial dependent vasodilator mechanisms appeared insufficient to restore responsiveness to vasoconstrictor stimuli.  相似文献   

16.
The effects of leukotriene C4 (LTC4) and leukotriene D4 (LTD4) in the feline mesenteric vascular bed were investigated under conditions of controlled blood flow so that changes in perfusion pressure directly reflect changes in vascular resistance. Intra-arterial injections of LTC4 and LTD4 (0.3-3.0 micrograms) increased perfusion pressure in a dose-related fashion. Vasoconstrictor responses to LTC 4 and LTD4 were similar to norepinephrine (NE) whereas mesenteric vasoconstrictor response to the thromboxane analog, U46619, was markedly greater than were responses to LTC4 and LTD4. Meclofenamate in a dose that greatly attenuated the systemic depressor response to arachidonic acid was without effect on vasoconstrictor responses to LTC4 and LTD4, NE and U46619 in the mesenteric vascular bed. The present data show that LTC4 and LTD4 possess significant vasoconstrictor activity in the feline mesenteric vascular bed. In addition, the present data suggest that products of the cyclooxygenase pathway do not mediate vasoconstrictor responses to LTC4 and LTD4 in the intestinal circulation of the cat.  相似文献   

17.
In the present study, we evaluated the involvement of the rennin-angiotensin system (RAS) in the control of the blood pressure (BP), baroreceptor-mediated bradycardia and the reactivity of caudal ventrolateral medulla (CVLM) neurons to Ang II and to AT(2) receptor antagonist in sedentary or trained renovascular hypertensive rats. Physical activity did not significantly change the baseline mean arterial pressure (MAP), heart rate (HR) or the sensitivity of the baroreflex bradycardia in normotensive Sham rats. However, in 2K1C hypertensive rats, physical activity induced a significant fall in baseline MAP and HR and produced an improvement of the baroreflex function (bradycardic component). The microinjections of Ang II into the CVLM produced similar decreases in MAP in all groups, Sham and 2K1C, sedentary and trained rats. The hypotensive effect of Ang II at the CVLM was blocked by previous microinjection of the AT(2) receptors antagonist, PD123319, in all groups of rats. Unexpectedly, microinjection of PD123319 at the CVLM produced a depressor effect in 2K1C sedentary that was attenuated in 2K1C trained rats. No significant changes in MAP were observed after PD123319 in Sham rats, sedentary or trained. These data showed that low-intensity physical activity is effective in lowering blood pressure and restoring the sensitivity of the baroreflex bradycardia, however these cardiovascular effects are not accompanied by changes in the responsiveness to Ang II at CVLM in normotensive or hypertensive, 2K1C rats. In addition, the blood pressure changes observed after AT(2) blockade in 2K1C rats suggest that hypertension may trigger an imbalance of AT(1)/AT(2) receptors at the CVLM that may be restored, at least in part, by low-intensity physical activity.  相似文献   

18.
This study tested the hypothesis that in hypertensive arteries cyclooxygenase-1 (COX-1) remains as a major form, mediating prostacyclin (prostaglandin I2; PGI2) synthesis that may evoke a vasoconstrictor response in the presence of functional vasodilator PGI2 (IP) receptors. Two-kidney-one-clip (2K1C) hypertension was induced in wild-type (WT) mice and/or those with COX-1 deficiency (COX-1-/-). Carotid arteries were isolated for analyses 4 weeks after. Results showed that as in normotensive mice, the muscarinic receptor agonist ACh evoked a production of the PGI2 metabolite 6-keto-PGF and an endothelium-dependent vasoconstrictor response; both of them were abolished by COX-1 inhibition. At the same time, PGI2, which evokes contraction of hypertensive vessels, caused relaxation after thromboxane-prostanoid (TP) receptor antagonism that abolished the contraction evoked by ACh. Antagonizing IP receptors enhanced the contraction to the COX substrate arachidonic acid (AA). Also, COX-1-/- mice was noted to develop hypertension; however, their increase of blood pressure and/or heart mass was not to a level achieved with WT mice. In addition, we found that either the contraction in response to ACh or that evoked by AA was abolished in COX-1-/- hypertensive mice. These results demonstrate that as in normotensive conditions, COX-1 is a major contributor of PGI2 synthesis in 2K1C hypertensive carotid arteries, which leads to a vasoconstrictor response resulting from opposing dilator and vasoconstrictor activities of IP and TP receptors, respectively. Also, our data suggest that COX-1-/- attenuates the development of 2K1C hypertension in mice, reflecting a net adverse role yielded from all COX-1-mediated activities under the pathological condition.  相似文献   

19.
L Finch 《Life sciences》1974,15(10):1827-1836
Isolated perfused mesenteric arteries obtained from experimental hypertensive rats (spontaneous and deoxycorticosterone/NaCl) exhibit an increased vascular reactivity to noradrenaline and 5-hydroxytryptamine. The dose response curves obtained exhibited in the threshold dose. After 4 weeks of antihypertensive therapy (a combination of hydrallazine, hydrochlorothiazide and reserpine) which lowered the blood pressures of hypertensive rats to normotensive levels the arteries from the hypertensive animals still exhibited an increased reactivity to vasoconstrictor agents. These results support the hypothesis that the increased reactivity observed in hypertensive animals may be partially due to adaptive structural changes in the blood vessels. However, the persistence of the hyperactivity after antihypertensive therapy seriously questions its involvement in the maintenance of the elevated blood pressure.  相似文献   

20.
CL 115,347 orally (0.25-10 mg/kg) and topically (0.03 and 0.1 mg/kg) lowered blood pressure in a dose-dependent manner in conscious spontaneously hypertensive rats (SHR). Duration of action of the oral dose range was from 1 to more than 8 h and of the topical dose range, from more than 6 to more than 24 h. CL 115,347 was 100-200 times more potent orally and greater than 250 times more potent topically than l-prostaglandin (PG) E2. When 3 mg/kg was administered orally, CL 115,347 was also active in Dahl "S" salt-sensitive hypertensive rats, deoxycorticosterone acetate-salt hypertensive rats, aorta-coarcted renin-dependent hypertensive rats, normotensive rats, bilaterally nephrectomized SHR, and bilaterally ureteral-ligated SHR. CL 115,347 was also orally active at 0.1 mg/kg in normotensive rhesus monkeys and in renal hypertensive dogs at 1 mg/kg. CL 115,347 was as active as l-PGE2 in relaxing the rabbit ear arterial smooth muscle in vitro. In anesthetized dogs, CL 115,347 injected intra-arterially (0.5-10 micrograms) into the vascular bed being studied increased blood flow to femoral, carotid, coronary, superior mesenteric, and renal vascular beds. CL 115,347 decreased vasopressor responses induced by electrical stimulation of the spinal cord at T7-T9 but did not decrease the tachycardia induced by stimulation of the cardioaccelerator segments (C7-T1) in pithed SHR. CL 115,347 has a broad spectrum of antihypertensive activity in various animal models and probably exerts its major antihypertensive effects through relaxation of blood vessels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号