首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
The protein composition of the crude venoms of the three most important vipers of Tunisia was analyzed by RP-HPLC, N-terminal sequence analysis, MALDI-TOF mass determination, and in-gel tryptic digestion followed by PMF and CID-MS/MS of selected peptide ions in a quadrupole-linear IT instrument. Our results show that the venom proteomes of Cerastes cerastes, Cerastes vipera, and Macrovipera lebetina are composed of proteins belonging to a few protein families. However, each venom showed distinct degree of protein composition complexity. The three venoms shared a number of protein classes though the relative occurrence of these toxins was different in each snake species. On the other hand, the venoms of the Cerastes species and Macrovipera lebetina each contained unique components. The comparative proteomic analysis of Tunisian snake venoms provides a comprehensible catalogue of secreted proteins, which may contribute to a deeper understanding of the biological effects of the venoms, and may also serve as a starting point for studying structure-function correlations of individual toxins.  相似文献   

5.
During the cloning of abundant cDNAs expressed in the Micrurus corallinus coral snake venom gland, we cloned an alpha-neurotoxin homologue cDNA (nxh1). Two others isoforms were also cloned (nxh3 and nxh7, respectively). The nxh1 cDNA codes for a potential coral snake toxin with a signal peptide of 21 amino acids plus a predicted mature peptide with 57 amino acids. The deduced protein is highly similar to known toxic three-finger alpha-neurotoxins, with four deduced S-S bridges at the same conserved positions. This is the first cDNA coding for a three-finger related protein described so far for coral snakes. However, the predicted protein does not possess some of the important amino acids for the nicotinic acetylcholine receptor interaction. This protein was expressed in Escherichia coli as a His-tagged protein that allowed the rapid purification of the recombinant protein. This protein was used to generate antibodies which recognized the recombinant protein in Western blot and also a single band present in the M. corallinus venom, but not in the venom of 10 other Micrurus species.  相似文献   

6.
1. Elution profiles of 11 coral snake venoms, including those of Micrurus albicinctus, M. corallinus, M. frontalis altirostris, M. f. brasiliensis, M. f. frontalis, M. fulvius fulvius, M. ibiboboca, M. lemniscatus ssp., M. rondonianus, M. spixii spixii and M. surinamensis surinamensis, were compared using high performance gel filtration and reverse phase media. 2. Micrurus venom profiles were compared with those of "outgroup" taxa Bothrops moojeni, Naja naja kaouthia and Bungarus multicinctus. 3. Purified elapid venom constituents were also chromatographed under identical conditions in order to suggest possible identities of Micrurus venom constituents. 4. Masses of various components were confirmed by mass spectrometry. 5. Phospholipase constituents in three venoms were positively identified based on their reverse phase chromatograms. 6. Venoms of M. rondonianus and M. s. surinamensis are shown to be significantly different in their peptide composition from other Micrurus venoms.  相似文献   

7.
8.
1. Venoms of 11 coral snake taxa, including Micrurus albicinctus, M. corallinus, M. frontalis altirostris, M. f. brasiliensis, M. f. frontalis, M. fulvius fulvius, M. ibiboboca, M. lemniscatus ssp., M. randonianus, M. spixii spixii, and M. surinamensis surinamensis, were examined for 13 enzymatic activities. 2. These were compared with venoms of three outgroup taxa: Naja naja kaouthia, Bungarus multicinctus, and Bothrops moojeni. 3. Enzyme activity levels in Micrurus venoms were highly variable from species to species. 4. All venoms possessed phospholipase activity. 5. Protease activity against synthetic or dyed natural substrates was generally negligible in all elapid venoms examined. By contrast, most Micrurus venoms displayed ample L-leucine aminopeptidase activity. 6. Venom of M.s. surinamensis was significantly different from those of its congeners in most assays.  相似文献   

9.
We report the proteomic characterization of venom of the pitvipers Bothrops cotiara and Bothrops fonsecai. Crude venoms were fractionated by reverse-phase HPLC, followed by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and CID-MS/MS. Each venom contained around 30 proteins in the range of 7-110 kDa belonging to only 8 (B. cotiara) and 9 (B. fonsecai) families which may target the hemostatic system, albeit distinctly distributed among the two species. B. cotiara and B. fonsecai share medium-sized disintegrins, disintegrin-like/cysteine-rich (DC) fragments, snake venom vascular endothelial growth factor, cysteine-rich secretory proteins, serine proteinases, C-type lectins, l-amino acid oxidase, and Zn(2+)-dependent metalloproteinases. In addition, B. fonsecai expresses a high abundance PLA(2) molecule (13,890 Da), whereas PLA(2) molecules were not detected in B. cotiara's venom. This striking finding is in line with previous biochemical analyses showing the absence of phospholipasic activity in the venom of B. cotiara. The potential adaptive significance of the lack of PLA(2) molecules is enigmatic, and alternative explanations are discussed. B. fonsecai is morphologically extremely similar to B. cotiara. Our comparative proteomic analysis shows that compositional differences between their venoms can be employed as a taxonomy signature for unambiguous species identification independently of geographic origin and morphological characteristics.  相似文献   

10.
11.
12.
Juárez P  Sanz L  Calvete JJ 《Proteomics》2004,4(2):327-338
The protein composition of the crude venom of Sistrurus barbouri was analyzed by two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Proteins were separated by reversed phase high-performance liquid chromatography and characterized by N-terminal sequence analysis. The molecular mass and number of cysteine residues of the purified proteins were determined by matrix-associated laser desorption/ionization-time of flight mass spectrometry. Selected protein bands were subjected to in-gel tryptic digestion and peptide mass fingerprinting. Analysis of the tandem mass spectrometry spectra of selected doubly-charged peptide ions was done by collision-induced dissociation in a quadrupole-linear ion trap instrument. Our results show that the venom proteome of the pigmy rattlesnake S. barbouri is composed of proteins belonging to a few protein families, which can be structurally characterized by their disulfide bond contents.  相似文献   

13.
The protein composition of the soluble venom from the South American fish-eating coral snake Micrurus surinamensis surinamensis, here abbreviated M. surinamensis, was separated by RP-HPLC and 2-DE, and their components were analyzed by automatic Edman degradation, MALDI-TOF and ESI-MS/MS. Approximately 100 different molecules were identified. Sixty-two components possess molecular masses between 6 and 8 kDa, are basically charged molecules, among which are cytotoxins and neurotoxins lethal to fish (Brachidanios rerio). Six new toxins (abbreviated Ms1-Ms5 and Ms11) were fully sequenced. Amino acid sequences similar to the enzymes phospholipase A2 and amino acid oxidase were identified. Over 20 additional peptides were identified by sequencing minor components of the HPLC separation and from 2-DE gels. A functional assessment of the physiological activity of the six toxins was also performed by patch clamp using muscular nicotinic acetylcholine receptor assays. Variable degrees of blockade were observed, most of them reversible. The structural and functional data obtained were used for phylogenetic analysis, providing information on some evolutionary aspects of the venom components of this snake. This contribution increases by a factor of two the total number of alpha-neurotoxins sequenced from the Micrurus genus in currently available literature.  相似文献   

14.
A paradoxical task of the venom gland of snakes is the synthesis and storage of an instantly available suite of toxins to immobilize prey and the protection of the snake against its own venom components. Furthermore, autolysis of the venom constituents due to the action of venom metalloproteases is an additional problem, particularly among viperid venoms, which are typically rich in lytic enzymatic proteins. To address questions concerning these problems, the structure of the venom gland was investigated using light microscopy, SEM and TEM. The composition of the venom originating from the intact venom apparatus or from the main venom gland alone was analyzed by electrophoresis, and the pH of freshly expressed venom as well as pH optima of several representative enzymes was evaluated. Results from several species of rattlesnakes demonstrated that the venom gland is structurally complex, particularly in its small rostral portion called the accessory gland, which may be a site of activation of venom components. Secreted venom is stable in extremes of temperature and dilution, and several proximate mechanisms, including pH and endogenous inhibitors, exist which inhibit enzymatic activity of the venom during storage within the venom gland but allow for spontaneous activation upon injection into prey. Whereas acid secretion by the parietal cells activates digestive enzymes in the stomach, within the venom gland acidification inhibits venom enzymes. We propose that the mitochondria-rich cells of the main venom gland, which are morphologically and histochemically very similar to the parietal cells of the mammalian gastric pit, play a central role in the stabilization of the venom by secreting acidic compounds into the venom and maintaining the stored venom at pH 5.4. Hence, our results indicate yet another trophic link between the processes of venom production and of digestion, and demonstrate that the venom glands of snakes may represent an excellent model for the study of protein stability and maintenance of toxic proteins.  相似文献   

15.
16.
17.
A 26-year-old dried polyacrylamide gel, cast in presence of an immobilized pH gradient and containing focused proteins from the venoms of a northern black-tailed rattlesnake (Crotalus molossus molossus), and of a western diamondback rattlesnake (Crotalus atrox) has been screened in order to see the feasibility of extracting the proteins, analyzing them by mass spectrometry (MS) and assessing their integrity. Nine gel bands were excised along the pH 3-10 gradient and the gel segments reswollen in warm acetonitrile. Upon digestion and MS analysis, all the bands could be identified and attributed to the respective venoms of the two rattlesnake species. Although a few peptides exhibited modified amino acids, the proteins were found to be well preserved even upon such a long storage at room temperature. The present data suggest the feasibility of identifying proteins from very old samples trapped in polyacrylamide gels, and analyzed in a pre-mass spectrometry era, thus of uncertain identity.  相似文献   

18.
Venoms of the redtail coral snake Micrurus mipartitus from Colombia and Costa Rica were analyzed by "venomics", a proteomic strategy to determine their composition. Proteins were separated by RP-HPLC, followed by SDS-PAGE, in-gel tryptic digestion, identification by MALDI or ESI tandem mass spectrometry, and assignment to known protein families by similarity. These analyses were complemented with a characterization of venom activities in vitro and in vivo. Proteins belonging to seven families were found in Colombian M. mipartitus venom, including abundant three-finger toxins (3FTx; ~60% of total proteins) and phospholipases A(2) (PLA(2); ~30%), with the remaining ~10% distributed among l-amino acid oxidase, P-III metalloproteinase, Kunitz-type inhibitor, serine proteinase, and C-type lectin-like families. The venoms of two M. mipartitus specimens from Costa Rica, also referred to as M. multifasciatus in some taxonomic classifications, were also analyzed. Both samples were highly similar to each other, and partially resembled the chromatographic and identity profiles of M. mipartitus from Colombia, although presenting a markedly higher proportion of 3FTxs (~83.0%) in relation to PLA(2)s (~8.2%), and a small amount of acetylcholinesterase, not detected in the venom from Colombia. An equine antivenom against the Central American coral snake, M. nigrocinctus, did not recognize venom components of M. mipartitus from Colombia or Costa Rica by enzyme-immunoassay. Four major components of Colombian M. mipartitus venom were isolated and partially characterized. Venomics of Micrurus species may provide a valuable platform for the rational design of immunizing cocktails to obtain polyspecific antivenoms for this highly diverse group of American elapids.  相似文献   

19.
Snake venom alpha-neurotoxins and other 'three-finger' proteins.   总被引:4,自引:0,他引:4  
The review is mainly devoted to snake venom alpha-neurotoxins which target different muscle-type and neuronal nicotinic acetylcholine receptors. The primary and spatial structures of other snake venom proteins as well as mammalian proteins of the Ly-6 family, which structurally resemble the 'three-finger' snake proteins, are also briefly discussed. The main emphasis is placed on recent data characterizing the alpha-neurotoxin interactions with nicotinic acetylcholine receptors.  相似文献   

20.
A phospholipase A2 was purified from the Mexican coral snake Micrurus fulvius microgalbieus (Brown and Smith). Gel filtration of the soluble crude venom on Sephadex g-50 resolved five fractions, of which fraction II had 98% of the total phospholipase activity. This fraction was rechromatographed on a CM-cellulose column that resolved eight fractions, four of which had an important phospholipase activity. The first fraction (II-1) was homogeneous by polyacrylamide-gel electrophoresis and displayed a phospholipase specific activity of 920 units/mg of protein. The apparent molecular weight as determined by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was approx. 14000. The amino acid analysis revealed the presence of 119 amino acid residues, with 12 half-cystines. the N-terminal sequence was shown to be Ser-Leu-Leu-Asx-Phe-Lys-Asx-Met-Ile-Glu-Ser-Thr..., which is homologous with that of phospholipases from other snake venoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号