首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Members of the the Bcl-2 and ICE/ced-3 gene families have been implicated as essential components in the control of the cell death pathway. Bcl-2 overexpression can prevent programmed cell death (PCD) in different cell types. ICE/ced-3-like proteases are synthesized as pro-enzymes and are activated by limited proteolysis. When overexpressed in diverse cell types, they trigger PCD. Bcl-2 can inhibit PCD mediated by these proteases, although as yet it is not clear at what specific step in the cell death pathway the protein acts. Here, we demonstrate that CPP32/Yama/Apopain, a member of the ICE/Ced-3 gene family, is processed during staurosporine-induced apoptosis in HeLa cells and that concomitant with CPP32 activation, two other proteins, poly (ADP-ribose) polymerase (PARP) and the U1-70 K small ribonucleoprotein, also undergo proteolysis. Overexpression of Bcl-2 prevents cleavage of CPP32, PARP and U1-70 K and protects HeLa cells from PCD. These results demonstrate that Bcl-2 controls PCD, by acting upstream of CPP32/Yama/Apopain.  相似文献   

2.
Two Ras effector pathways leading to the activation of Raf-1 and phosphatidylinositol 3-kinase (PI3K) have been implicated in the survival signaling by the interleukin 3 (IL-3) receptor. Analysis of apoptosis suppression by Raf-1 demonstrated the requirement for mitochondrial translocation of the kinase in this process. This could be achieved either by overexpression of the antiapoptotic protein Bcl-2 or by targeting Raf-1 to the mitochondria via fusion to the mitochondrial protein Mas p70. Mitochondrially active Raf-1 is unable to activate extracellular signal-related kinase 1 (ERK1) and ERK2 but suppresses cell death by inactivating the proapoptotic Bcl-2 family member BAD. However, genetic and biochemical data also have suggested a role for the Raf-1 effector module MEK-ERK in apoptosis suppression. We thus tested for MEK requirement in cell survival signaling using the interleukin 3 (IL-3)-dependent cell line 32D. MEK is essential for survival and growth in the presence of IL-3. Upon growth factor withdrawal the expression of constitutively active MEK1 mutants significantly delays the onset of apoptosis, whereas the presence of a dominant negative mutant accelerates cell death. Survival signaling by MEK most likely results from the activation of ERKs since expression of a constitutively active form of ERK2 was as effective in protecting NIH 3T3 fibroblasts against doxorubicin-induced cell death as oncogenic MEK. The survival effect of activated MEK in 32D cells is achieved by both MEK- and PI3K-dependent mechanisms and results in the activation of PI3K and in the phosphorylation of AKT. MEK and PI3K dependence is also observed in 32D cells protected from apoptosis by oncogenic Raf-1. Additionally, we also could extend these findings to the IL-3-dependent pro-B-cell line BaF3, suggesting that recruitment of MEK is a common mechanism for survival signaling by activated Raf. Requirement for the PI3K effector AKT in this process is further demonstrated by the inhibitory effect of a dominant negative AKT mutant on Raf-1-induced cell survival. Moreover, a constitutively active form of AKT synergizes with Raf-1 in apoptosis suppression. In summary these data strongly suggest a Raf effector pathway for cell survival that is mediated by MEK and AKT.  相似文献   

3.
Apoptosis is a distinct form of programmed cell death that plays an important role in many biological processes.Although the phenotypes of apoptotic cells are well documented, little is known of the central mechanismleading to programmed cell death. Over the past few years, a number of ICE/CED-3 family proteases(also termed caspases) have been discovered and implicated as the common effectors of apoptosis. Inthis report, we demonstrate that induction of apoptosis in CHO-K1 cells by staurosporine, a broad spectruminhibitor of protein kinases, results in an increase in DEVD-dependent protease activity. These events werefollowed by nuclear DNA fragmentation and cell death. Inhibition of the DEVD-cleaving activity by a synthetictetrapeptide inhibitor DEVD-CHO, blocked staurosporine-induced downstream apoptotic phenotypes, suchas morphological characteristics and DNA fragmentation. These results suggest that staurosporine-inducedapoptosis in CHO-K1 cells is mediated through the CPP32/caspase-3-like cysteine proteases.  相似文献   

4.
Response gene to complement 32 (RGC32) is a novel protein originally identified as a cell cycle activator and has been demonstrated to be overexpressed in a variety of human malignancies, including lung cancer. However, the potential role of RGC32 in lung cancer initiation and progression remains to be elucidated. In the present study, RNA interference mediated by plasmid expressing RGC32 short-hairpin RNA (shRNA) was utilized to knockdown RGC32 expression in human lung cancer LTE cells. We found that the mRNA and protein expression levels of RGC32 were significantly decreased in RGC32-specific shRNA-transfected cells in comparison with the untransfected and control shRNA-transfected cells. Furthermore, knockdown of RGC32 dramatically reduced cell proliferation, colony formation, and invasion and migration capacities of LTE cells in vitro. Specific down-regulation of RGC32 caused G0/G1 cell cycle arrest and eventual apoptosis. Meanwhile, Western blot analysis indicated that cells with stably knockdown of RGC32 showed decreased expression levels of Cyclin D1, Cyclin E, Bcl-2, matrix metalloproteinase (MMP)-2, and MMP-9, but increased expression levels of activate caspase-3, Bax, and cleaved poly (ADP-ribose) polymerase (PARP) in comparison with control shRNA-transfected cells. Taken together, our data suggest that RGC32 is involved in tumorigenesis of human lung cancer and may serve as a promising therapeutic target for lung cancer.  相似文献   

5.
GS32/SNAP-29 is a SNAP-25-like SNARE and has been shown to interact with syntaxin 6. Using immobilized recombinant GS32, we have recovered EHD1 as a major GS32-interacting protein from total HeLa cell extracts. This interaction is mediated by the EH domain of EHD1 and the N-terminal NPF-containing 17-residue region of GS32. Co-immunoprecipitation suggests that GS32 could also interact with EHD1 in intact cells. When immobilized GST-EHD1 was used to fish out interacting proteins from total brain extracts, syndapin II was identified as a major interacting partner. Similar to the GS32-EHD1 interaction, syndapin II also interacts with the EH domain of EHD1 via its NPF repeat region. Interaction of endogenous EHD1 and syndapin II was also established by co-immunoprecipitation. Furthermore, interaction of GS32 and syndapin II with EHD1 was shown to be mutually exclusive, suggesting that EHD1 may regulate/participate in the functional pathways of both GS32 and syndapin II in a mutual exclusive manner. Opposing roles of GS32 and syndapin II in regulating the surface level of transferrin receptor (TfR) were observed.  相似文献   

6.
GS32/SNAP-29 is a SNAP-25-like SNARE and has been shown to interact with syntaxin 6. Using immobilized recombinant GS32, we have recovered EHD1 as a major GS32-interacting protein from total HeLa cell extracts. This interaction is mediated by the EH domain of EHD1 and the N-terminal NPF-containing 17-residue region of GS32. Co-immunoprecipitation suggests that GS32 could also interact with EHD1 in intact cells. When immobilized GST-EHD1 was used to fish out interacting proteins from total brain extracts, syndapin II was identified as a major interacting partner. Similar to the GS32-EHD1 interaction, syndapin II also interacts with the EH domain of EHD1 via its NPF repeat region. Interaction of endogenous EHD1 and syndapin II was also established by co-immunoprecipitation. Furthermore, interaction of GS32 and syndapin II with EHD1 was shown to be mutually exclusive, suggesting that EHD1 may regulate/participate in the functional pathways of both GS32 and syndapin II in a mutual exclusive manner. Opposing roles of GS32 and syndapin II in regulating the surface level of transferrin receptor (TfR) were observed.  相似文献   

7.
MicroRNA-32 (miR-32) functioned as a tumor oncogene in some cancer, which control genes involved in important biological and pathological functions and facilitate the tumor growth and metastasis. However, the role of miR-32 modulates esophageal squamous cell carcinoma (ESCC) malignant transformation has not been clarified. Here, we focused on the function and the underlying molecular mechanism of miR-32 in ESCC. Results discovered a significant increased expression of miR-32 in ESCC tissues and cells. Downregulation of miR-32 inhibited the migration, invasion, adhesion of ESCC cell lines (EC9706 and KYSE450), and the levels of EMT protein in vitro. In vivo, miR-32 inhibitors decrease tumor size, tumor weight, and the number of metastatic nodules. Hematoxylin and eosin (H&E) results revealed that inhibition of miR-32 attenuate lung metastasis. Immunohistochemistry and immunofluorescence assay showed increased level of E-cadherin and decreased level of N-cadherin and Vimentin with treatment of miR-32 inhibitors. Furthermore, miR-32 targeted the 3′-untranslated region (3′-UTR) of CXXC5, and inhibited the level of mRNA and protein of CXXC5. There is a negative correlation between the expressions of CXXC5 and miR-32. Then, after EC9706 and KYSE450 cells cotransfected with si-CXXC5 and miR-32 inhibitors, the ability of cell migration, invasion, and adhesion was significantly reduced. In addition, the protein expression of EMT and TGF-β signaling was also depressed. Collectively, these data supply an insight into the positive role of miR-32 in ESCC progression and metastasis, and its biological effects may attribute the inhibition of TGF-β signaling mediated by CXXC5.  相似文献   

8.
Interleukin-1 alpha (IL-1alpha) and beta (IL-1beta) are well known factors that stimulate hematopoiesis, nevertheless there are reports that show that they can also inhibit this activity. While both IL-1alpha and IL-1beta induce the expression of hematopoietic cytokines, such as growth factors and their receptors on myeloid cells, helping thus to regulate hematopoiesis, it is not known if their inhibitory activity is also mediated through the induction of other specific cytokines. In this work we show that recombinant human IL-1beta (rhIL-1beta) inhibits the proliferation of a mouse IL-3-dependent myeloid multipotent cell line (32D cl3), without inducing its differentiation. We show that rhIL-1beta induces in 32D cl3 cells the expression of the tumor necrosis factor alpha (TNF-alpha) gene, a well known growth inhibitor, and that the rhIL-1beta growth inhibition property on 32D cl3 cells is partially due to this secreted TNF-alpha, hinting thus that the inhibition of hematopoiesis by IL-1 is mediated through other induced cytokines.  相似文献   

9.
Cell surface retention sequence binding protein-1 (CRSBP-1) is a cell surface binding protein for the cell surface retention sequence (CRS) motif of the v-sis gene product (platelet-derived growth factor-BB). It has been shown to be responsible for cell surface retention of the v-sis gene product in v-sis-transformed cells (fibroblasts) and has been hypothesized to play a role in autocrine growth and transformation of these cells. Here we demonstrate that the CRSBP-1 cDNA cloned from bovine liver libraries encodes a 322-residue type I membrane protein containing a 23-residue signal peptide, a 215-residue cell surface domain, a 21-residue transmembrane domain, and a 63-residue cytoplasmic domain. CRSBP-1 expressed in transfected cells is an approximately 120-kDa disulfide-linked homodimeric glycoprotein and exhibits dual ligand (CRS-containing growth regulators (v-sis gene product and insulin-like growth factor binding protein-3, IGFBP-3) and hyaluronic acid) binding activity. CRSBP-1 overexpression (by stable transfection of cells with CRSBP-1 cDNA) enhances autocrine loop signaling, cell growth, and tumorigenicity (in mice) of v-sis-transformed cells. CRSBP-1 expression also enhances autocrine cell growth mediated by IGFBP-3 in human lung carcinoma cells (H1299 cells), which express very little, if any, endogenous CRSBP-1 and exhibits a mitogenic response to exogenous IGFBP-3, stably transfected with IGFBP-3 cDNA. However, CRSBP-1 overexpression does not affect growth of normal and transformed cells that do not produce these CRS-containing growth regulators. These results suggest that CRSBP-1 plays a role in autocrine regulation of cell growth mediated by growth regulators containing CRS.  相似文献   

10.
Checkpoint kinase 1 (Chk1) is a cell cycle regulator and a heat shock protein 90 (Hsp90) client. It is essential for cell proliferation and survival. In this report, we analyzed the mechanisms of Chk1 regulation in U87MG glioblastoma cells using Geldanamycin (GA), which interferes with the function of Hsp90. GA reduced Chk1 protein level but not its mRNA level in glioblastoma cells. Co-treatment with GA and cycloheximide (CHX), a protein synthesis inhibitor, induced a decrease of half-life of the Chk1 protein to 3h and resulted in Chk1 down-regulation. CHX alone induced only 32% reduction of Chk1 protein even after 24h. These findings indicated that reduction of Chk1 by GA was due to destabilization and degradation of the protein. In addition, GA-induced down-regulation of Chk1 was reversed by MG132, a specific proteasome inhibitor. And it was revealed that Chk1 was ubiquitinated by GA. These results have indicated that degradation of Chk1 by GA was mediated by the ubiquitin-proteasome pathway in U87MG glioblastoma cells.  相似文献   

11.
Mcl-1 is a recently described homologue of Bcl-2 whose function and biochemical characteristics remain poorly defined. Gene transfer experiments in lnterleukin-3 (IL-3)-dependent myeloid progenitor 32D.3 cells and pro-B-lymphoid FL5.12 cells demonstrated that enforced production of high levels of Mcl-1 protein failed to prolong the survival of cells when cultured in the absence of IL-3, whereas Bcl-2 did delay cell death. Mcl-1 also did not prolong the survival in vitro of 32D.3 cells that had been induced to differentiate into mature neutrophils using Granulocyte-Colony Stimulating Factor (G-CSF), whereas Bcl-2 did. 32D.3 and FL5.12 cells co-transfected with Mcl-1 and Bcl-2 displayed survival kinetics essentially identical to cells transfected with Bcl-2 alone, when cultured in the absence of IL-3, indicating that Mcl-1 neither enhances nor impairs Bcl-2 function. In contrast to the lack of effects of Mcl-1 in 32D.3 and FL5.12 cells, Mcl-1 (like Bcl-2) was able to neutralise Bax-induced cytotoxicity in yeast (S. cerevisiae). Moreover, the recombinant GST-Mcl-1 protein bound specifically to in vitro translated Bax protein, as well as to Bax protein present in detergent lysates prepared from 32D.3 and FL5.12 cells, based on in vitro binding assays. However, Mcl-1 and Bax proteins could not be co-immunoprecipitated from control and transfected 32D.3 and FL5.12 cells, whereas Bcl-2 and Bax were easily co-immunoprecipitated under the same conditions. The findings suggest that while Mcl-1 has the capacity to bind to and neutralise the cell death promoting activity of Bax, other factors such as perhaps additional proteins or undefined post-translational modifications may influence its ability to bind to Bax in vivo and thus affect its function as a cell death blocker.  相似文献   

12.
PTEN/MMAC1/TEP1 in signal transduction and tumorigenesis.   总被引:43,自引:0,他引:43  
The level of phosphorylation within cells is tightly regulated by the concerted action of protein kinases and protein phosphatases [Hunter, T. (1995) Cell 80, 225-236]. Disregulation in the activity of either of these players can lead to cellular transformation. Many protein tyrosine kinases are proto-oncogenes and it has been postulated that some protein phosphatases may act as tumor suppressors. Herein we will review the recent findings addressing the roles the candidate tumor suppressor PTEN/MMAC1/TEP1 (PTEN, phosphatase and tensin homologue deleted from chromosome 10; MMAC 1, mutated in multiple advanced cancers 1; TEP1, TGF beta regulated and epithelial cell enriched phosphatase 1) plays in signal transduction and tumorigenesis. PTEN is a dual specificity protein phosphatase (towards phospho-Ser/Thr and phospho-Tyr) and, unexpectedly, also has a phosphoinositide 3-phosphatase activity. PTEN plays an important role in the modulation of the 1-phosphatidylinositol 3-kinase (PtdIns 3-kinase) pathway, by catalyzing the degradation of the PtdIns(3,4,5)P3 generated by PtdIns 3-kinase; this inhibits the downstream functions mediated by the PtdIns 3-kinase pathway, such as activation of protein kinase B (PKB, also known as Akt), cell survival and cell proliferation. Furthermore, PTEN modulates cell migration and invasion by negatively regulating the signals generated at the focal adhesions, through the direct dephosphorylation and inhibition of focal adhesion kinase (FAK). Growth factor receptor signaling is also negatively regulated by PTEN, through the inhibition of the adaptor protein Shc. While some of the functions of PTEN have been elucidated, it is clear that there is much more to discover about the roles of this unique protein.  相似文献   

13.
14.
Protein knockdown can be achieved by the use of a small molecule that possesses affinity for both the target protein and ubiquitin ligase. We have designed such a degradation-inducing molecule targeting cIAP1 and CRABP-II, which are involved in proliferation of several cancer cell lines and in neuroblastoma growth, respectively. As a CRABP-II-recognizing moiety, all-trans retinoic acid (ATRA, 3), a physiological ligand of CRABP, was chosen. As a cIAP1-recognizing moiety, MV1 (5), which is a cIAP1/cIAP2/XIAP pan-ligand, was chosen. Although cIAP1 itself possesses ubiquitin ligase activity, we expected that its decomposition would be efficiently mediated by related molecules, including cIAP2 and XIAP, which also possess ubiquitin ligase activity. The designed degradation inducer 6, in which ATRA (3) and MV1 (5) moieties are connected via a linker, was synthesized and confirmed to induce efficient degradation of both cIAP1 and CRABP-II. It showed potently inhibited the proliferation of IMR32 cells.  相似文献   

15.
DdEGFL1, a synthetic epidermal growth factor-like (EGFL) peptide based on the first EGFL repeat of the extracellular matrix, cysteine-rich, calmodulin-binding protein CyrA, has previously been shown to sustain the threonine phosphorylation of a 210kDa protein during the starvation of Dictyostelium cells. Immunoprecipitation coupled with a LC/MS/MS analysis identified the 210kDa protein as vinculin B (VinB). VinB shares sequence similarity with mammalian vinculin, a protein that links the actin cytoskeleton to the plasma membrane. Both threonine phosphorylated VinB (P-VinB) and VinB-GFP localized to the cytoplasm and cytoskeleton of Dictyostelium amoebae. VinB-GFP was also shown to be threonine phosphorylated and co-immunoprecipitated with established vinculin-binding cytoskeletal proteins (e.g. myosin II heavy chain, actin, alpha-actinin, talin). P-VinB and VinB-GFP were detected in DdEGFL1 pull-down assays, which also identified a 135kDa phosphothreonine protein and two phosphotyrosine proteins (35 and 32kDa) as potential components of the DdEGFL1 signaling pathway. DdEGFL1-enhanced cell movement required the cytoskeletal proteins talin B and paxillin B and tyrosine kinase activity mediated by PKA signaling, however VinB threonine phosphorylation was shown to be independent of PI3K/PLA2 signaling and PI3K and PKA kinase activity. Finally, VinB-GFP over-expression suppressed DdEGFL1-enhanced random cell movement, but not folic acid-mediated chemotaxis. Together, this study provides the first evidence for VinB function plus new insight into the signaling pathway(s) mediating EGFL repeat/peptide-enhanced cell movement in Dictyostelium. This information is integrated into an emerging model that summarizes existing knowledge.  相似文献   

16.
Noradrenaline-stimulated phosphoinositide breakdown in cultured glia was found to be mediated by alpha(1A)-adrenoceptors. The alpha(1A)-selective agonist A61603 was as effective as noradrenaline in eliciting 3H-inositol phosphate (IP) accumulation but was approximately 50-fold more potent. In addition, the use of selective antagonists revealed a clear rank order of potency in the ability of these drugs to reverse the effect of noradrenaline on phosphoinositide breakdown: RS17053 (alpha(1A)-selective) >AH11110A (alpha(1B)-selective)>BMY7378 (alpha(1D)-selective). Pre-treatment of cultured glia with the protein phosphatase inhibitor okadaic acid resulted in a concentration- and time-dependent reduction in noradrenaline-evoked 3H-IP accumulation. This effect was mimicked by, but was not additive with, a phorbol ester, was reversed by protein kinase C (PKC) inhibitors and was not evident in cells which had been PKC depleted. The ability of cell extracts to dephosphorylate radiolabelled glycogen phosphorylase revealed the presence of the phosphatases PP1 and PP2A in almost equal abundance. Okadaic acid pre-treatment of intact cultures elicited a marked reduction in total phosphatase activity, particularly that mediated by PP2A. We also determined the effect of okadaic acid pre-treatment on PKC and cyclic AMP-dependent protein kinase (PKA) activities in these cells. PKC and PKA activities in cell extracts were assessed by determining the incorporation of 32P into histone and kemptide, respectively. Okadaic acid elicited increases in both Ca(2+)-dependent and Ca(2+)-independent PKC activity; in addition, increases in both initial and total PKA activities were also recorded. The effect of okadaic acid on noradrenaline-stimulated 3H-IP accumulation were not, however, mimicked by either forskolin or 8-bromo-cyclic AMP, suggesting that this event is not regulated by PKA. Our data point to roles for both PKC and PP2A in the regulation of alpha(1A)-adrenoceptor-linked phosphoinositide metabolism in cultured cortical glia.  相似文献   

17.
Ceramidases catalyze hydrolysis of ceramides to generate sphingosine (SPH), which is phosphorylated to form sphingosine-1-phosphate (S1P). Ceramide, SPH, and S1P are bioactive lipids that mediate cell proliferation, differentiation, apoptosis, adhesion, and migration. Presently, 5 human ceramidases encoded by 5 distinct genes have been cloned: acid ceramidase (AC), neutral ceramidase (NC), alkaline ceramidase 1 (ACER1), alkaline ceramidase 2 (ACER2), and alkaline ceramidase 3 (ACER3). Each human ceramidase has a mouse counterpart. AC, NC, and ACER1-3 have maximal activities in acidic, neutral, and alkaline environments, respectively. ACER1-3 have similar protein sequences but no homology to AC and NC. AC and NC also have distinct protein sequences. The human AC (hAC) was implicated in Farber disease, and hAC may be important for cell survival. The mouse AC (mAC) is needed for early embryo survival. NC is protective against inflammatory cytokines, and the mouse NC (mNC) is required for the catabolism of ceramides in the digestive tract. ACER1 is critical in mediating cell differentiation by controlling the generation of SPH and S1P and that ACER2's role in cell proliferation and survival depends on its expression or the cell type in which it is found. Here, we discuss the role of each ceramidase in regulating cellular responses mediated by ceramides, SPH, and S1P.  相似文献   

18.
A recombinant chimeric plasminogen activator (GHRP-scu-PA-32K), consisting of the tetrapeptide Gly-His-Arg-Pro fused to the N-terminus of the low-molecular single-chain urokinase-type plasminogen activator (Leu144-Leu411), was produced by expression in CHO cells. The stable expression cell line was selected for large-scale expression. The product was purified by antibody-Sepharose affinity chromatography with a recovery of 67%. The apparent molecular weight of purified GHRP-scu-PA-32K was 33 kDa according to SDS-PAGE. Its specific activity was 150000 IU/mg protein according to fibrin plate determination. The conversion of single-chain to two-chain molecules mediated by plasmin was comparable for GHRP-scu-PA-32K (K(m)=4.9 microM, k(2)=0.35 s(-1)) and scu-PA-32K. The activation of plasminogen by GHRP-scu-PA-32K (K(m)=1.02 microM, k(2)=0.0028 s(-1)) was also similar to that of scu-PA-32K. The fibrin binding of GHRP-scu-PA-32K was 2.5 times higher than that of scu-PA-32K at a fibrin concentration of 3.2 mg/ml. In contrast to scu-PA-32K in vitro 125I-fibrin-labeled plasma clot lysis, GHRP-scu-PA had a higher thrombolytic potency, whereas it depleted less fibrinogen in plasma. These results show that GHRP-scu-PA-32K as expected is a potential thrombolytic agent.  相似文献   

19.
Mature striatal medium size spiny neurons express the dopamine and cAMP-regulated phosphoprotein, 32 kDa (DARPP-32), but little is known about the mechanisms regulating its levels, or the specification of fully differentiated neuronal subtypes. Cell extrinsic molecules that increase DARPP-32 mRNA and/or protein levels include retinoic acid (RA), brain-derived neurotrophic factor, and estrogen (E2). We now demonstrate that RA regulates DARPP-32 mRNA and protein in primary striatal neuronal cultures. Furthermore, DARPP-32 induction by RA in vitro requires phosphatidylinositide 3-kinase, but is independent of tropomyosin-related kinase B, cyclin-dependent kinase 5, and protein kinase B. Using pharmacologic inhibitors of various isoforms of protein kinase C (PKC), we also demonstrate that DARPP-32 induction by RA in vitro is dependent on PKC zeta (PKCζ). Thus, the signal transduction pathways mediated by RA are very different than those mediating DARPP-32 induction by brain-derived neurotrophic factor. These data support the presence of multiple signal transduction pathways mediating expression of DARPP-32 in vitro , including a novel, important pathway via which phosphatidylinositide 3-kinase regulates the contribution of PKCζ.  相似文献   

20.
R-Ras contains a proline-rich motif that resembles SH3 domain-binding sites but that has escaped notice previously. We show here that this site in R-Ras is capable of binding SH3 domains and that the SH3 domain binding may be important for R-Ras function. A fusion protein containing the SH3 domains of the adaptor protein Nck interacted strongly with the R-Ras proline-rich sequence and with the intact protein. The binding was independent of whether R-Ras was in its GDP or GTP form. The Nck binding, which was mediated by the second of the three SH3 domains of Nck, was obliterated by mutations in the proline-rich sequence of R-Ras. The interaction of Nck with R-Ras could also be shown in yeast two-hybrid assays and by co-immunoprecipitation in human cells transfected with Nck and R-Ras. Previous results have shown that the expression of a constitutively active R-Ras mutant, R-Ras(38V), converts mouse 32D monocytic cells into highly adherent cells. Introducing the proline mutations into R-Ras(38V) suppressed the effect of R-Ras on 32D cell adhesion while not affecting GTP binding. These results reveal an unexpected regulatory pathway that controls R-Ras through an SH3 domain interaction. This pathway appears to be important for the ability of R-Ras to control cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号