首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the requirement for tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 receptors in the pathogenesis of the pulmonary and hepatic responses to Escherichia coli lipopolysaccharide (LPS) by studying wild-type mice and mice deficient in TNF type 1 receptor [TNFR1 knockout (KO)] or both TNF type 1 and IL-1 receptors (TNFR1/IL-1R KO). In lung tissue, NF-kappaB activation was similar among the groups after exposure to aerosolized LPS. After intraperitoneal injection of LPS, NF-kappaB activation in liver was attenuated in TNFR1 KO mice and further diminished in TNFR1/IL-1R KO mice; however, in lung tissue, no impairment in NF-kappaB activation was found in TNFR1 KO mice and only a modest decrease was found in TNFR1/IL-1R KO mice. Lung concentrations of KC and macrophage-inflammatory peptide 2 were lower in TNFR1 KO and TNFR1/IL-1R KO mice after aerosolized and intraperitoneal LPS. We conclude that LPS-induced NF-kappaB activation in liver is mediated through TNF-alpha- and IL-1 receptor-dependent pathways, but, in the lung, LPS-induced NF-kappaB activation is largely independent of these receptors.  相似文献   

2.
The transmembrane protease ADAM17 regulates the release and density of various leukocyte cell surface proteins that modulate inflammation, including L-selectin, TNF-α, and IL-6R. At this time, its in vivo substrates and role in pulmonary inflammation have not been directly examined. Using conditional ADAM17 knock-out mice, we investigated leukocyte ADAM17 in acute lung inflammation. Alveolar TNF-α levels were significantly reduced (>95%) in ADAM17-null mice following LPS administration, as was the shedding of L-selectin, a neutrophil-expressed adhesion molecule. Alveolar IL-6R levels, however, were reduced by only ≈25% in ADAM17-null mice, indicating that ADAM17 is not its primary sheddase in our model. Neutrophil infiltration into the alveolar compartment is a key event in the pathophysiology of acute airway inflammation. Following LPS inhalation, alveolar neutrophil levels and lung inflammation in ADAM17-null mice were overall reduced when compared to control mice. Interestingly, however, neutrophil recruitment to the alveolar compartment occurred earlier in ADAM17-null mice after exposure to LPS. This decrease in alveolar neutrophil recruitment in ADAM17-null mice was accompanied by significantly diminished alveolar levels of the neutrophil-tropic chemokines CXCL1 and CXCL5. Altogether, our study suggests that leukocyte ADAM17 promotes inflammation in the lung, and thus this sheddase may be a potential target in the design of pharmacologic therapies for acute lung injury.  相似文献   

3.
The effect of inhaled nitric oxide (NO) on inflammatory process in acute lung injury (ALI) is unclear. The aims of this study were to 1) examine whether inhaled NO affects the biochemical lung injury parameters and cellular inflammatory responses and 2) determine the effect of inhaled NO on the activation of nuclear factor-kappa B (NF-kappa B) in lipopolysaccharide (LPS)-induced ALI. Compared with saline controls, rabbits treated intravenously with LPS showed increases in total protein and lactate dehydrogenase in the bronchoalveolar lavage (BAL) fluid, indicating ALI. LPS-treated animals with NO inhalation (LPS-NO) showed significant decreases in these parameters. Neutrophil numbers in the BAL fluid, the activity of reactive oxygen species in BAL cells, and the levels of interleukin (IL)-1 beta and IL-8 in alveolar macrophages were increased in LPS-treated animals. In contrast, neutrophil numbers and these cellular activities were substantially decreased in LPS-NO animals, compared with LPS-treated animals. NF-kappa B activation in alveolar macrophages from LPS-treated animals was also markedly increased, whereas this activity was effectively blocked in LPS-NO animals. These results suggest that inhaled NO attenuates LPS-induced ALI and pulmonary inflammation. This attenuation may be associated with the inhibition of NF-kappa B activation.  相似文献   

4.
Inhaled endotoxin induces an inflammatory response that contributes to the development and severity of asthma and other forms of airway disease. Here, we show that inhaled endotoxin-induced acute bronchoconstriction, TNF, IL-12p40, and KC production, protein leak, and neutrophil recruitment in the lung are abrogated in mice deficient for the adaptor molecule MyD88. Bronchoconstriction, inflammation, and protein leak are normal in Toll/IL-1R domain-containing adaptor inducing IFN-beta-deficient mice. MyD88 is involved in TLR, but also in IL-1R-associated kinase 1-mediated IL-1R and -18R signaling. We exclude a role for IL-1 and IL-18 pathways in this response, as IL-1R1 and caspase-1 (ICE)-deficient mice develop lung inflammation while TLR4-deficient mice are unresponsive to inhaled LPS. Significantly, using bone marrow chimera, we demonstrate that both hemopoietic and resident cells are necessary for a full MyD88-dependent response to inhaled endotoxin; bronchoconstriction depends on resident cells while cytokine secretion is mediated by hemopoietic cells.  相似文献   

5.
Respirovirus infection can cause viral pneumonia and acute lung injury (ALI).The interleukin-1 (IL-1) family consists of proinflammatory cytokines that play essential roles in regulating immune and inflammatory responses in vivo.IL-1 signaling is associated with protection against respiratory influenza virus infection by mediation of the pulmonary anti-viral immune response and inflammation.We analyzed the infiltration lung immune leukocytes and cytokines that contribute to inflammatory lung pathology and mortality of fatal H1N1 virus-infected IL-1 receptor 1 (IL-1R1) deficient mice.Results showed that early innate immune cells and cytokine/chemokine dysregulation were observed with significantly decreased neutrophil infiltration and IL-6,TNF-α,G-CSF,KC,and MIP-2 cytokine levels in the bronchoalveolar lavage fluid of infected IL-1R1-/-mice in comparison with that of wild type infected mice.The adaptive immune response against the H1N1 virus in IL-1R1-/-mice was impaired with downregulated anti-viral Th1 cell,CD8+ cell,and antibody functions,which contributes to attenuated viral clearance.Histological analysis revealed reduced lung inflammation during early infection but severe lung pathology in late infection in IL-1R1-/-mice compared with that in WT infected mice.Moreover,the infected IL-1R1-/-mice showed markedly reduced neutrophil generation in bone marrow and neutrophil recruitment to the inflamed lung.Together,these results suggest that IL-1 signaling is associated with pulmonary anti-influenza immune response and inflammatory lung injury,particularly via the influence on neutrophil mobilization and inflammatory cytokine/chemokine production.  相似文献   

6.
Tumor necrosis factor-alpha (TNF) is implicated as an important proinflammatory cytokine in asthma. We evaluated mice deficient in TNF receptor 1 (TNFR1) and TNFR2 [TNFR(-/-) mice] in a murine model of allergic inflammation and found that TNFR(-/-) mice had comparable or accentuated responses compared with wild-type [TNFR(+/+)] mice. The responses were consistent among multiple end points. Airway responsiveness after methacholine challenge and bronchoalveolar lavage (BAL) fluid leukocyte and eosinophil numbers in TNFR(-/-) mice were equivalent or greater than those observed in TNFR(+/+) mice. Likewise, serum and BAL fluid IgE; lung interleukin (IL)-2, IL-4, and IL-5 levels; and lung histological lesion scores were comparable or greater in TNFR(-/-) mice compared with those in TNFR(+/+) mice. TNFR(+/+) mice chronically treated with anti-murine TNF antibody had BAL fluid leukocyte numbers and lung lesion scores comparable to control antibody-treated mice. These results suggest that, by itself, TNF does not have a critical proinflammatory role in the development of allergic inflammation in this mouse model and that the production of other cytokines associated with allergic disease may compensate for the loss of TNF bioactivity in the TNFR(-/-) mouse.  相似文献   

7.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of morbidity and mortality in the intensive care unit, but despite continuing research few effective therapies have been identified. In recent years, inhaled carbon monoxide (CO) has been reported to have cytoprotective effects in several animal models of tissue injury. We therefore evaluated the effects of inhaled CO in three different in vivo mouse models of ALI. Anesthetized C57BL/6 mice were ventilated with oxygen in the presence or absence of CO (500 parts per million) for 1 h before lung injury was induced by lipopolysaccharide (LPS) or oleic acid (OA) administration. Ventilation was then continued with the same gases for a further 2-3 h, with hemodynamic and respiratory parameters monitored throughout. Intratracheal LPS administration induced lung injury with alveolar inflammation (increased lavage fluid neutrophils, total protein, and cytokines). In contrast, intravenous LPS induced a predominantly vascular lung injury, with increased plasma TNF and increased neutrophil activation (surface Mac-1 upregulation and L-selectin shedding) and sequestration within the pulmonary vasculature. Intravenous OA produced deteriorations in lung function, reflected by changes in respiratory mechanics and blood gases and lavage fluid neutrophil accumulation. However, addition of CO to the inspired gas did not produce significant changes in the measured physiological or immunological parameters in the mouse models used in this study. Thus the results do not support the hypothesis that use of inhaled CO is beneficial in the treatment of ALI and ARDS.  相似文献   

8.
This study was designed to investigate the mechanisms through which tumor necrosis factor (Tnf) modulates ozone (O(3))-induced pulmonary injury in susceptible C57BL/6J (B6) mice. B6 [wild-type (wt)] mice and B6 mice with targeted disruption (knockout) of the genes for the p55 TNF receptor [TNFR1(-/-)], the p75 TNF receptor [TNFR2(-/-)], or both receptors [TNFR1/TNFR2(-/-)] were exposed to 0.3 parts/million O(3) for 48 h (subacute), and lung responses were determined by bronchoalveolar lavage. All TNFR(-/-) mice had significantly less O(3)-induced inflammation and epithelial damage but not lung hyperpermeability than wt mice. Compared with air-exposed control mice, O(3) elicited upregulation of lung TNFR1 and TNFR2 mRNAs in wt mice and downregulated TNFR1 and TNFR2 mRNAs in TNFR2(-/-) and TNFR1(-/-) mice, respectively. Airway hyperreactivity induced by acute O(3) exposure (2 parts/million for 3 h) was diminished in knockout mice compared with that in wt mice, although lung inflammation and permeability remained elevated. Results suggested a critical role for TNFR signaling in subacute O(3)-induced pulmonary epithelial injury and inflammation and in acute O(3)-induced airway hyperreactivity.  相似文献   

9.
Lung injury is marked by a persistent self-propagating inflammation within the pulmonary tissue that is initiated by the migration of leukocytes into the alveolar space. Recent work has demonstrated that neuronal guidance proteins are involved into the orchestration of leukocyte migration. Neogenin is a crucial guidance receptor for axonal migration, yet its role during leukocyte migration and acute inflammation is to date unknown. Here, we report that neogenin influences neutrophil migration across endothelial HMEC-1 and alveolar A549 monolayers in vitro. In vivo, Neo1(-/-) mice demonstrated 59% reduced cell count, 41% reduced TNF-α, and 76% reduced IL-6 levels within the alveolar space during lung injury. In studies employing chimeric animals, the presence of Neo1(-/-) bone marrow was associated with a 42% reduction of cell count and reduced inflammatory changes within pulmonary tissue during lung injury. The functional inhibition of neogenin through antibody injection confirmed these results and the role of neogenin for the inflammatory changes within the alveolar space. Previously unappreciated, the guidance receptor neogenin has a significant effect on the orchestration of leukocyte migration and the control of acute inflammation.  相似文献   

10.
The interaction of TNF-alpha with TNF receptor 1 (TNFR1) activates several signal transduction pathways that lead to apoptosis or NF-kappa B-dependent inflammation and immunity. We hypothesized that host TNFR1 expression contributes to noninfectious lung injury and inflammation commonly observed after bone marrow transplantation (BMT), termed idiopathic pneumonia syndrome (IPS). C57BL/6 TNFR1-sufficient (TNFR1(+/+)) and -deficient (TNFR1(-/-)) mice were total body irradiated with or without cyclophosphamide conditioning and were given bone marrow plus IPS-inducing donor spleen T cells from B10.BR wild-type mice. TNFR1(-/-) recipient mice exhibited improved early post-BMT survival associated with decreased permeability edema. In addition, the low lung compliance measured in anesthetized, ventilated TNFR1(+/+) mice on day 7 after BMT was restored to baseline during TNFR1 deficiency. Importantly, bronchoalveolar lavage fluid (BALF) inflammatory cells from TNFR1(-/-) vs. TNFR1(+/+) mice generated less nitric oxide (.NO) and nitrating species and exhibited suppressed programmed cell death as assessed using flow cytometry. However, cellular infiltration and levels of proinflammatory cytokines and chemokines were generally higher in BALF collected on day 7 after BMT from TNFR1(-/-) compared with TNFR1(+/+) recipient mice. Our results support a major role of host TNFR1 in regulation of .NO production and lung dysfunction after allogeneic BMT.  相似文献   

11.
The aim of the present study was to evaluate the anti-inflammatory activity of pre-elafin, an elastase-specific inhibitor, in lipopolysaccharide (LPS)-induced acute lung inflammation. C57BL/6 mice were pre-treated intranasally with recombinant human pre-elafin or vehicle only. One hour later, they were instilled intranasally with LPS (2 microg/mouse). Animals were sacrificed 6 hours after LPS instillation and bronchoalveolar lavage (BAL) was performed with three 1-ml aliquots of saline. LPS induced a lung inflammation characterised by a 100-fold increase in BAL neutrophils compared to control animals (265.8 +/- 54.5 x 10(3) and 2.4 +/- 1.3 x 10(3) neutrophils/ml, respectively). Pre-elafin dose-dependently reduced the neutrophil influx in the lung alveolar spaces by up to 84%. No elastase activity was detectable in all BAL fluids tested. Pre-elafin also reduced significantly LPS-induced gelatinase activity, as shown by zymography, and BAL macrophage inflammatory protein-2 (MIP-2) and KC levels, two potent neutrophil attractants and activators. Moreover, pre-elafin also significantly reduced mRNA levels of the three members of the IL-1 ligand family, namely IL-1alpha, IL-1beta and IL-1 receptor antagonist (IL-1Ra), type II IL-1 receptor, and TNFalpha as assessed in whole lung tissue by RNase protection assay. Thus, pre-elafin may be considered as a potent anti-inflammatory mediator.  相似文献   

12.
Interleukin (IL)-8 from pulmonary epithelial cells has been suggested to play an important role in the airway inflammation, although the mechanism remains unclear. We envisioned a possibility that pulmonary epithelial CCR3 could be involved in secretion and regulation of IL-8 and promote lipopolysaccharide (LPS)-induced lung inflammation. Human bronchial epithelial cell line NCI-H292 and alveolar type II epithelial cell line A549 were used to test role of CCR3 in production of IL-8 at cellular level. In vivo studies were performed on C57/BL6 mice instilled intratracheally with LPS in a model of acute lung injury (ALI). The activity of a CCR3-specific inhibitor (SB-328437) was measured in both in vitro and in vivo systems. We found that expression of CCR3 in NCI-H292 and A549 cells were increased by 23% and 16%, respectively, 24 h after the challenge with LPS. LPS increased the expression of CCR3 in NCI-H292 and A549 cells in a time-dependent manner, which was inhibited significantly by SB-328437. SB-328437 also diminished neutrophil recruitment in alveolar airspaces and improved LPS-induced ALI and production of IL-8 in bronchoalveolar lavage fluid. These results suggest that pulmonary epithelial CCR3 be involved in progression of LPS-induced lung inflammation by mediating release of IL-8. CCR3 in pulmonary epithelia may be an attractive target for development of therapies for ALI.  相似文献   

13.
Hepatic injury can lead to systemic and pulmonary inflammation through activation of NF-kappaB-dependent pathways and production of various proinflammatory cytokines. The exact mechanism remains unknown, although prior research suggests interleukin-1beta (IL-1beta) plays an integral role. Cultured murine alveolar macrophages were used to identify an optimized IL-1beta-specific short interfering RNA (siRNA) sequence, which then was encapsulated in liposomes and administered intraperitoneally to transgenic HLL mice (5'-HIV-LTR-Luciferase). A 35% hepatic mass cryoablation in HLL and IL-1 receptor 1 knockout mice (IL1R1KO) was performed as a model for liver-induced pulmonary inflammation. IL-1beta siRNA pretreatment effectively and significantly reduced circulating IL-1beta levels at 4 h post-hepatic injury. IL-6 also was suppressed in mice with impaired IL-1 signaling pathways. NF-kappaB activation in the noninjured liver of HLL reporter mice pretreated with IL-1beta siRNA was found to be reduced compared with controls. Pulmonary NF-kappaB activity in this group also was diminished relative to controls. C-X-C chemokine levels in the lung remained significantly lower in IL-1 pathway-deficient mice. Similarly, lung myeloperoxidase content was unchanged from baseline at 24 h post-liver injury in IL-1beta siRNA-treated animals, whereas all other control groups demonstrated marked pulmonary neutrophilic infiltration. In conclusion, liver injury-induced lung inflammation in this model is mediated predominantly by IL-1beta. Knockdown of IL-1beta expression before hepatic injury led to significant reductions in both cytokine production and NF-kappaB activation. This translated to reduced pulmonary neutrophil accumulation. Pretreatment with IL-1beta siRNA may represent a novel intervention for preventing liver-mediated pulmonary inflammation.  相似文献   

14.
Infection with respiratory syncytial virus (RSV) in children can progress to respiratory distress and acute lung injury necessitating mechanical ventilation (MV). MV enhances apoptosis and inflammation in mice infected with pneumonia virus of mice (PVM), a mouse pneumovirus that has been used as a model for severe RSV infection in mice. We hypothesized that the Fas/Fas ligand (FasL) system, a dual proapoptotic/proinflammatory system involved in other forms of lung injury, is required for enhanced lung injury in mechanically ventilated mice infected with PVM. C57BL/6 mice and Fas-deficient ("lpr") mice were inoculated intratracheally with PVM. Seven or eight days after PVM inoculation, the mice were subjected to 4 h of MV (tidal volume 10 ml/kg, fraction of inspired O(2) = 0.21, and positive end-expiratory pressure = 3 cm H(2)O). Seven days after PVM inoculation, exposure to MV resulted in less severe injury in lpr mice than in C57BL/6 mice, as evidenced by decreased numbers of polymorphonuclear neutrophils in the bronchoalveolar lavage (BAL), and lower concentrations of the proinflammatory chemokines KC, macrophage inflammatory protein (MIP)-1α, and MIP-2 in the lungs. However, when PVM infection was allowed to progress one additional day, all of the lpr mice (7/7) died unexpectedly between 0.5 and 3.5 h after the onset of ventilation compared with three of the seven ventilated C57BL/6 mice. Parameters of lung injury were similar in nonventilated mice, as was the viral content in the lungs and other organs. Thus, the Fas/FasL system was partly required for the lung inflammatory response in ventilated mice infected with PVM, but attenuation of lung inflammation did not prevent subsequent mortality.  相似文献   

15.
Little is known about interactions between endogenous anti-inflammatory paradigms and microvascular thrombosis in lung ischemia/reperfusion (I/R) injury. Interleukin (IL)-10 suppresses macrophage activation and down-regulates proinflammatory cytokine production, but there are no available data to suggest a link between IL-10, thrombosis, and fibrinolysis in the setting of I/R. We hypothesized that hypoxia/ischemia triggers IL-10 production, to dampen proinflammatory cytokine and adhesion receptor cascades and to restore vascular patency by fibrinolytic potentiation. Studies were performed in a mouse lung I/R model. IL-10 mRNA levels in lung were increased 43-fold over base line by 1 h of ischemia/2 h of reperfusion, with a corresponding increase in plasma IL-10. Expression was prominently localized in bronchial epithelial cells and mononuclear phagocytes. To study the link between IL-10 and fibrinolysis in vivo, the induction of plasminogen activator inhibitor-1 (PAI-1) was evaluated. Northern analysis demonstrated exaggerated pulmonary PAI-1 expression in IL-10 (-/-) mice after I/R, with a corresponding increase in plasma PAI/tissue-type plasminogen activator activity. In vivo, IL-10 (-/-) mice showed poor postischemic lung function and survival after I/R compared with IL-10 (+/+) mice. Despite a decrease in infiltration of mononuclear phagocytes in I/R lungs of IL-10 (-/-) mice, an increased intravascular pulmonary fibrin deposition was observed by immunohistochemistry and Western blotting, along with increased IL-1 expression. Recombinant IL-10 given to IL-10 (-/-) mice normalized the PAI/tissue-type plasminogen activator ratio, reduced pulmonary vascular fibrin deposition, and rescued mice from lung injury. Since recombinant hirudin (direct thrombin inhibitor) also sufficed to rescue IL-10 (-/-) mice, these data suggest a preeminent role for microvascular thrombosis in I/R lung injury. Ischemia-driven IL-10 expression confers postischemic pulmonary protection by augmenting endogenous fibrinolytic mechanisms.  相似文献   

16.
Fas (CD95) is a membrane surface receptor, which, in the lungs, is expressed in macrophages, neutrophils, and epithelial cells. In mice, Fas activation leads to a form of lung injury characterized by increased alveolar permeability. We investigated whether Fas-mediated lung injury occurs primarily as a result of Fas activation in myeloid cells (such as macrophages) or in nonmyeloid cells (such as epithelial cells). Chimeric mice lacking Fas in either myeloid or nonmyeloid cells were generated by transplanting marrow cells from lpr mice (which lack Fas) into lethally irradiated C57BL/6 mice (MyFas(-) group) or vice versa (MyFas(+) group). Additional mice transplanted with marrow cells from their same strain served as controls (Fas(+) ctr and Fas(-) ctr groups). Sixty days after transplantation, the mice received intratracheal instillations of the Fas-activating mAb Jo2 (n = 10/group), or an isotype control Ab (n = 10/group), and were euthanized 24-h later. Only animals expressing Fas in nonmyeloid cells (Fas(+) ctr and MyFas(-)) showed significant increases in lung neutrophil content and in alveolar permeability. These same mice showed tissue evidence of lung injury and caspase-3 activation in cells of the alveolar walls. Despite differences in the neutrophilic response and lung injury, there was no statistical difference in the lung cytokine concentrations (KC and MIP-2) among groups. We conclude that Fas-mediated lung injury requires expression of Fas on nonmyeloid cells of the lungs. These findings suggest that the alveolar epithelium is the primary target of Fas-mediated acute lung injury, and demonstrate that apoptotic processes may be associated with neutrophilic inflammation.  相似文献   

17.
Although early events in the pathogenesis of acute lung injury (ALI) have been defined, little is known about the mechanisms mediating resolution. To search for determinants of resolution, we exposed wild type (WT) mice to intratracheal LPS and assessed the response at intervals to day 10, when injury had resolved. Inducible NO synthase (iNOS) was significantly upregulated in the lung at day 4 after LPS. When iNOS(-/-) mice were exposed to intratracheal LPS, early lung injury was attenuated; however, recovery was markedly impaired compared with WT mice. iNOS(-/-) mice had increased mortality and sustained increases in markers of lung injury. Adoptive transfer of WT (iNOS(+/+)) bone marrow-derived monocytes or direct adenoviral gene delivery of iNOS into injured iNOS(-/-) mice restored resolution of ALI. Irradiated bone marrow chimeras confirmed the protective effects of myeloid-derived iNOS but not of epithelial iNOS. Alveolar macrophages exhibited sustained expression of cosignaling molecule CD86 in iNOS(-/-) mice compared with WT mice. Ab-mediated blockade of CD86 in iNOS(-/-) mice improved survival and enhanced resolution of lung inflammation. Our findings show that monocyte-derived iNOS plays a pivotal role in mediating resolution of ALI by modulating lung immune responses, thus facilitating clearance of alveolar inflammation and promoting lung repair.  相似文献   

18.
We previously demonstrated that exposure to febrile-range hyperthermia (FRH) accelerates pathogen clearance and increases survival in murine experimental Klebsiella pneumoniae peritonitis. However, FRH accelerates lethal lung injury in a mouse model of pulmonary oxygen toxicity, suggesting that the lung may be particularly susceptible to injurious effects of FRH. In the present study, we tested the hypothesis that, in contrast with the salutary effect of FRH in Gram-negative peritonitis, FRH would be detrimental in multilobar Gram-negative pneumonia. Using a conscious, temperature-clamped mouse model and intratracheal inoculation with K. pneumoniae Caroli strain, we showed that FRH tended to reduce survival despite reducing the 3 day-postinoculation pulmonary pathogen burden by 400-fold. We showed that antibiotic treatment rescued the euthermic mice, but did not reduce lethality in the FRH mice. Using an intratracheal bacterial endotoxin LPS challenge model, we found that the reduced survival in FRH-treated mice was accompanied by increased pulmonary vascular endothelial injury, enhanced pulmonary accumulation of neutrophils, increased levels of IL-1beta, MIP-2/CXCL213, GM-CSF, and KC/CXCL1 in the bronchoalveolar lavage fluid, and bronchiolar epithelial necrosis. These results suggest that FRH enhances innate host defense against infection, in part, by augmenting polymorphonuclear cell delivery to the site of infection. The ultimate effect of FRH is determined by the balance between accelerated pathogen clearance and collateral tissue injury, which is determined, in part, by the site of infection.  相似文献   

19.
The early response cytokines, TNF and IL-1, have overlapping biologic effects that may function to propagate, amplify, and coordinate host responses to microbial challenges. To determine whether signaling from these early response cytokines is essential to orchestrating innate immune responses to intrapulmonary bacteria, the early inflammatory events induced by instillation of Escherichia coli into the lungs were compared in wild-type (WT) mice and mice deficient in both TNF receptor 1 (TNFR1) and the type I IL-1 receptor (IL1R1). Neutrophil emigration and edema accumulation induced by E. coli were significantly compromised by TNFR1/IL1R1 deficiency. Neutrophil numbers in the circulation and within alveolar septae did not differ between WT and TNFR1/IL1R1 mice, suggesting that decreased neutrophil emigration did not result from decreased sequestration or delivery of intravascular neutrophils. The nuclear translocation of NF-kappa B and the expression of the chemokine macrophage inflammatory protein-2 did not differ between WT and TNFR1/IL1R1 lungs. However, the concentration of the chemokine KC was significantly decreased in the bronchoalveolar lavage fluids of TNFR1/IL1R1 mice compared with that in WT mice. Thus, while many of the molecular and cellular responses to E. coli in the lungs did not require signaling by either TNFR1 or IL1R1, early response cytokine signaling was critical to KC expression in the pulmonary air spaces and neutrophil emigration from the alveolar septae.  相似文献   

20.
Excessive inflammatory response induced by lipopolysaccharide (LPS) plays a critical role in the development of acute lung injury (ALI). Paralemmin-3 (PALM3) is a novel protein that can modulate LPS-stimulated inflammatory responses in alveolar epithelial A549 cells. However, it remains unclear whether it is involved in the progression of ALI in vivo. Therefore, we studied the role of PALM3 in the pathogenesis of ALI induced by LPS. ALI was induced by LPS peritoneal injection in C57BL/6J mice. Lentivirus-mediated small interfering RNA (siRNA) targeting the mouse PALM3 gene and a negative control siRNA were intranasally administered to the mice. We found that the expression of PALM3 was up-regulated in the lung tissues obtained from the mouse model of LPS-induced ALI. The LPS-evoked inflammatory response (neutrophils and the concentrations of proinflammatory cytokines [IL-6, IL-1β, TNF-α, MIP-2] in the bronchoalveolar lavage fluid [BALF]), histologic lung injury (lung injury score), permeability of the alveolar capillary barrier (lung wet/dry weight ratio and BALF protein concentration) and mortality rates were attenuated in the PALM3 siRNA-treated mice. These results indicate that PALM3 contributes to the development of ALI in mice challenged with LPS. Inhibiting PALM3 through the intranasal application of specific siRNA protected against LPS-induced ALI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号