首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.

Background

RdCVF and RdCVF2, encoded by the nucleoredoxin-like genes NXNL1 and NXNL2, are trophic factors with therapeutic potential that are involved in cone photoreceptor survival. Studying how their expression is regulated in the retina has implications for understanding both their activity and the mechanisms determining cell-type specificity within the retina.

Methodology/Principal Findings

In order to define and characterize their promoters, a series of luciferase/GFP reporter constructs that contain various fragments of the 5′-upstream region of each gene, both murine and human, were tested in photoreceptor-like and non-photoreceptor cell lines and also in a biologically more relevant mouse retinal explant system. For NXNL1, 5′-deletion analysis identified the human −205/+57 bp and murine −351/+51 bp regions as having promoter activity. Moreover, in the retinal explants these constructs drove expression specifically to photoreceptor cells. For NXNL2, the human −393/+27 bp and murine −195/+70 bp regions were found to be sufficient for promoter activity. However, despite the fact that endogenous NXNL2 expression is photoreceptor-specific within the retina, neither of these DNA sequences nor larger upstream regions demonstrated photoreceptor-specific expression. Further analysis showed that a 79 bp NXNL2 positive regulatory sequence (−393 to 315 bp) combined with a 134 bp inactive minimal NXNL1 promoter fragment (−77 to +57 bp) was able to drive photoreceptor-specific expression, suggesting that the minimal NXNL1 fragment contains latent elements that encode cell-type specificity. Finally, based on bioinformatic analysis that suggested the importance of a CRX binding site within the minimal NXNL1 fragment, we found by mutation analysis that, depending on the context, the CRX site can play a dual role.

Conclusions/Significance

The regulation of the Nucleoredoxin-like genes involves a CRX responsive element that can act as both as a positive regulator of promoter activity and as a modulator of cell-type specificity.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

Background

HIV-1 remains sequestered during antiretroviral therapy (ART) and can resume high-level replication upon cessation of ART or development of drug resistance. Reactivity of memory CD8+ T lymphocytes to HIV-1 could potentially inhibit this residual viral replication, but is largely muted by ART in relation to suppression of viral antigen burden. Dendritic cells (DC) are important for MHC class I processing and presentation of peptide epitopes to memory CD8+ T cells, and could potentially be targeted to activate memory CD8+ T cells to a broad array of HIV-1 epitopes during ART.

Principal Findings

We show for the first time that HIV-1 peptide-loaded, CD40L-matured DC from HIV-1 infected persons on ART induce IFN gamma production by CD8+ T cells specific for a much broader range and magnitude of Gag and Nef epitopes than do peptides without DC. The DC also reveal novel, MHC class I restricted, Gag and Nef epitopes that are able to induce polyfunctional T cells producing various combinations of IFN gamma, interleukin 2, tumor necrosis factor alpha, macrophage inhibitory protein 1 beta and the cytotoxic de-granulation molecule CD107a.

Significance

There is an underlying, broad antigenic spectrum of anti-HIV-1, memory CD8+ T cell reactivity in persons on ART that is revealed by DC. This supports the use of DC-based immunotherapy for HIV-1 infection.  相似文献   

15.

Background and Aims

Alpha-gliadin proteins are important for the industrial quality of bread wheat flour, but they also contain many epitopes that can trigger celiac (cœliac) disease (CD). The B-genome-encoded α-gliadin genes, however, contain very few epitopes. Controlling α-gliadin gene expression in wheat requires knowledge on the processes of expression and deposition of α-gliadin protein during wheat grain development.

Methods

A 592-bp fragment of the promotor of a B-genome-encoded α-gliadin gene driving the expression of a GUS reporter gene was transformed into wheat. A large number of transgenic lines were used for data collection. GUS staining was used to determine GUS expression during wheat kernel development, and immunogold labelling and tissue printing followed by staining with an α-gliadin-specific antibody was used to detect α-gliadin protein deposited in developing wheat kernels. The promoter sequence was screened for regulatory motifs and compared to other available α-gliadin promoter sequences.

Key Results

GUS expression was detected primarily in the cells of the starchy endosperm, notably in the subaleurone layer but also in the aleurone layer. The α-gliadin promoter was active from 11 days after anthesis (DAA) until maturity, with an expression similar to that of a 326-bp low molecular weight (LMW) subunit gene promoter reported previously. An α-gliadin-specific antibody detected α-gliadin protein in protein bodies in the starchy endosperm and in the subaleurone layer but, in contrast to the promoter activity, no α-gliadin was detected in the aleurone cell layer. Sequence comparison showed differences in regulatory elements between the promoters of α-gliadin genes originating from different genomes (A and B) of bread wheat both in the region used here and upstream.

Conclusions

The results suggest that additional regulator elements upstream of the promoter region used may specifically repress expression in the aleurone cell layer. Observed differences in expression regulator motifs between the α-gliadin genes on the different genomes (A and B) of bread wheat leads to a better understanding how α-gliadin expression can be controlled.Key words: Alpha-gliadin, promoter, expression, deposition, wheat, Triticum aestivum, grain development  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号