首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Racemic ibuprofen has previously been shown to undergo metabolism by Verticillium lecanii to yield (S)-2-[4-(2-hydroxy-2-methylpropyl)phenyl] propionic acid which is enriched in the (S)-enantiomer. However, it had not been possible to elucidate whether ibuprofen or the metabolite was inverted. This paper describes the incubation of ibuprofen in non-growing cultures of V. lecanii , the results of which indicate that racemic ibuprofen is converted into a 70 : 30 (S : R) enantiomeric mixture after 6 d incubation in the absence of any metabolism. This suggests that V. lecanii could be a useful model for the investigation of the mechanism of mammalian chiral inversion of iburprofen.  相似文献   

2.
Bertil Waldeck 《Chirality》1993,5(5):350-355
The knowledge that enantiomers of chiral compounds may differ widely in biological activity, qualitatively as well as quantitatively, is not new. Nevertheless most of the pharmacological data available to date on chiral drugs are obtained from experiments with racemates which assume that the biological activity generally resides in one of the enantiomers. With the advancements made in stereospecific synthesis and stereoselective analysis of drugs pharmacologists are now offered new possibilities to explore the steric aspects of drug action. This survey will discuss pharmacological data obtained with enantiomer pairs of phenylethylamine derivatives which interact with adrenergic mechanisms. The degree of resolution is seldom specified in published work on stereoselectivity of drugs. In a recent study from our laboratory the enantiomers of the β2-adrenoceptor agonist formoterol and their diastereomers have been evaluated. We found that the (R;R)-enantiomer was by far the most potent. However, the relative potencies obtained for the (R;S)-, (S;R), and (S;S)- isomers were critically dependent on the degree of enantiomeric purity. It is concluded that the certainty of potency ratios observed for chiral drugs is limited by the enantiomeric purity and by unspecific effects of the least active enantiomer at very high concentrations. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Platelets metabolize 7,10,13,16,19-docosapentaenoic acid (22:5(n-3] into 11-hydroxy-7,9,13,16,19- and 14-hydroxy-7,10,12,16,19-docosapentaenoic acid via an indomethacin-insensitive pathway. Time-dependent studies with 20 microM substrate show a lag in the synthesis of both the 11- and 14-isomers which was not observed for the synthesis of thromboxane B2 (TXB2), 5,8,10-heptadecatrienoic acid, and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) from arachidonic acid. When platelets were incubated with increasing concentrations of 22:5(n-3), the 11- and 14-isomers were not produced until the substrate concentration exceeded 5 microM unless arachidonic acid was also added to the incubations. The stimulatory effect of arachidonic acid was not blocked by indomethacin thus suggesting that 12-hydroperoxyeicosatetraenoic acid or 12-HETE derived from arachidonic acid may activate the platelet lipoxygenase(s) which metabolize 22:5(n-3). Incubations containing 20 microM 22:5(n-3) and increasing levels of [1-14C]arachidonic acid show that the (n-3) acid inhibits the synthesis of both 5,8,10-heptadecatrienoic acid and TXB2 from arachidonic acid. At the same time, 12-HETE synthesis increased due to substrate shunting to the lipoxygenase pathway.  相似文献   

4.
The differences in the pharmacological effects of R(+)- and S(-)-isomers of the atypical antidepressant viloxazin were discovered in two behavioral models. The S(-)-isomer appeared 5 times as active as the R(+)-isomer under acute administration. In chronic administration, (15 days), the R(+)-isomer appeared ineffective. Comparison of the affinity of the racemate, R(+) and S(-)-isomers for alpha 1-, alpha 2- and beta-adrenoreceptors, as well as for serotonin, C1, benzodiazepine, imipramine and dopamine receptors did not demonstrate any stereospecificity of viloxazin isomers. It is assumed that some other receptors (histamine, acetylcholine) present the targets for the pharmacological action of viloxazin or the latter one has, like zimelidin , specific binding sites of its own.  相似文献   

5.
S. enteritidis 11RX infection inhibits the growth of a number of transplantable tumours in mice. In addition, oral infection of mice with S. enteritidis 11RX inhibits colon carcinogenesis by 1,2 dimethylhydrazine. This study has examined the effect of S. enteritidis 11RX infection on two-stage skin carcinogenesis in mice using 7,12 dimethylbenz(a)anthracene (DMBA) as initiator and croton oil as promoter. No protection was observed in either LACA or (BALB/c x C57Bl/6J)F1 mice when live 11RX was repeatedly administered i.v. during promotion. When a protein antigen extract from S. enteritidis 11RX was administered i.v. to previously immunised mice during skin carcinogenesis, significant protection was observed both in terms of the number of mice with papillomas and the number of papillomas per mouse. However, the protection was weak and transient. LACA mice were much more susceptible to skin carcinogenesis by DMBA and croton oil than were (BALB/c x C57B1/6J)F1 mice. A preliminary study indicated that BALB/c, C57B1 and CBA mice were also relatively resistant to skin carcinogensis.  相似文献   

6.
Ibuprofen [racemic2-(4-isobutylphenyl)propionic acid] is a 2-arylpropionic acid nonsteroidal anti-inflammatory drug which undergoes unidirectional, R to S chiral inversion in vivo. It has been proposed that this chiral inversion phenomenon occurs via a coenzyme A (CoA) thioester intermediate. To characterize the formation and metabolism of this metabolic intermediate, ibuprofenyl-CoA, reference standards were needed and thus the CoA derivatives of (R)-, (S)-, and racemic ibuprofen were chemically synthesized. An HPLC assay employing a C18 reverse-phase column was developed to quantitate "total" ibuprofenyl CoA. Samples collected from this assay were then analyzed for ibuprofenyl-CoA epimeric composition by chiral chromatography employing a Chiral-AGP alpha 1-acid glycoprotein column. The applicability of these methods was demonstrated by assessing (R)- and (S)-ibuprofenyl-CoA hydrolysis and epimerization following incubation with rat liver homogenates. Rat liver homogenate catalyzed the complete and rapid epimerization of ibuprofenyl-CoA and the rate constants for (R)- and (S)-ibuprofenyl-CoA hydrolysis were equal. ATP and CoA were found to inhibit rat liver-catalyzed ibuprofenyl-CoA hydrolysis by 70-80% with no effect on epimerization. Additionally, it was demonstrated that traditional indirect ibuprofenyl-CoA assays which employ basic hydrolysis result in erroneous epimeric ratio determinations due to chemical epimerization.  相似文献   

7.
Leucovorin (5-formyltetrahydrofolate, LV) is a reduced folate that has been in clinical use for many years as a rescue agent following methotrexate (MTX) therapy. Commercially available LV is a 1:1 mixture of [6R]-and [6S]-isomers. Due to the lack of a specific method for directly separating and quantitating the stereoisomers of LV, it has been difficult to precisely define the pharmacokinetic and biological characteristics of each stereoisomer. We have now developed a novel HPLC method to completely separate [6S]-LV and [6S]-5-methyltetrahydrofolate (MeTHF) from their respective [6R]-isomers using bovine serum albumin (BSA)-bonded silica as the chiral stationary phase. Baseline separation was achieved using 5 and 25 mM sodium phosphate buffers (pH 7.4) as the mobile phase with resolution factors of 1.65 for LV and 2.31 for MeTHF, respectively. The purity of each isomer prepared by this HPLC method is greater than 99%. The stereoisomers were identified by examining their ability to protect CEM cells from MTX (0.04 microM)-induced inhibition of growth. In the LV chromatogram, the first eluted peak provided complete protection from MTX growth inhibition when LV concentrations of 0.1 microM and above were used, whereas the last eluted peak failed to reverse MTX toxicity at concentrations up to 1.0 microM. Chemically pure synthetic [6R]-and [6S]-LV standards confirmed that the first eluted, biologically active peak is the [6S]-isomer. For MeTHF, only the last eluted peak effectively protects cells from MTX growth inhibition and is therefore believed to be the [6S]-isomer. This new HPLC method will serve as a useful tool to elucidate the clinical and cellular pharmacology of the stereoisomers of LV and MeTHF.  相似文献   

8.
The effects of the enantiomers of ibuprofen (0.25 and 0.50 mmol/kg b.w.) and flurbiprofen (0.01, 0.03, and 0.06 mmol/kg b.w.) on the beta-oxidation of palmitate were investigated in the rat. The mean cumulative exhalation of 14CO2 after ip administration of [U-14C]palmitic acid was significantly reduced over 6 h by ibuprofen at the higher dose but not at the lower dose for either enantiomer. There was no difference between the enantiomers, the reduction over 6 h being 31.3 and 33.0% for (R)- and (S)-ibuprofen, respectively. There was also a significant inhibition of beta-oxidation by flurbiprofen at all 3 doses. Again, there was no stereoselectivity evident in this inhibition. Flurbiprofen was much more potent than ibuprofen in eliciting this effect, the 0.01mmol/kg dose giving a similar reduction in beta-oxidation as observed for the 0.50 mmol/kg dose of ibuprofen. The data support the hypothesis that inhibition of the in vivo beta-oxidation of palmitate by ibuprofen and flurbiprofen is primarily via a nonstereoselective noncoenzyme A-dependent mechanism.  相似文献   

9.
β‐cyclodextrin (CD) and its derivatives HP‐β‐CD, DM‐β‐CD, and TM‐β‐CD have been employed as chiral selectors for the separation of three nonsteroidal antiinflammatory drugs (NSAIDs) and anticoagulant at relatively low concentration (8–15 mM) by capillary zone electrophoresis (CZE). In this study, baseline separation was achieved for ibuprofen, ketoprofen, naproxen, and warfarin. It was found that the addition of 0.1% hydroxypropyl methyl cellulose (HPMC) was effective for separation. Under these conditions, the S‐(+) enantiomer eluted before R‐(−) in terms of ibuprofen; the calculated energy values obtained from the molecular modeling correlated well with the elution order. An equation for calculating the pKa values by capillary electrophoresis was introduced, and the pKa values of the four chiral drugs at 25°C were obtained based on the equation. The value pKa + 0.5 is proposed to be the suitable pH of the background electrolyte for the separation of chiral compounds containing a carboxylic group. Chirality 11:56–62, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
A practical method to prepare precursor of [N-methyl-(11)C]vorozole ([(11)C]vorozole), an efficient positron emission tomography (PET) tracer for imaging aromatase in the living body, was established. Sufficient amount of the racemate including norvorozole, a demethylated vorozole derivative used as a precursor of [(11)C]vorozole, became available by means of high-yield eight-step synthesis. The enantiomers were separated by preparative HPLC using a chiral stationary phase column to give optically pure norvorozole and its enantiomer. From the latter, ent-[(11)C]vorozole, an enantiomer of [(11)C]vorozole, was prepared and used in the PET study for the first time, which was shown to bind very weakly to aromatase in rhesus monkey brain supporting the previous pharmacological results. The stable supply of norvorozole will facilitate further researches on aromatase in the living body including brain by the PET technique.  相似文献   

11.
Limited information is available regarding the cellular mechanisms of oxaliplatin-induced painful neuropathy during exposure of patients to this drug. We therefore determined oxidative stress in cultured cells and evaluated its occurrence in C57BL/6 mice. Using both cultured neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines and also brain tissues of oxaliplatin-treated mice, we investigated whether oxaliplatin (OXA) induces oxidative stress and apoptosis. Cultured cells were treated with 2–200 µM OXA for 24 h. The effects of pharmacological inhibitors of oxidative stress or inflammation (N-acetyl cysteine, ibuprofen, acetaminophen) were also tested. Inhibitors were added 30 min before OXA treatment and then in combination with OXA for 24 h. In SH-SY5Y cells, OXA caused a significant dose-dependent decrease in viability, a large increase in ROS and NO production, lipid peroxidation and mitochondrial impairment as assessed by a drop in mitochondrial membrane potential, which are deleterious for the cell. An increase in levels of negatively charged phospholipids such as cardiolipin but also phosphatidylserine and phosphatidylinositol, was also observed. Additionally, OXA caused concentration-dependent P2X7 receptor activation, increased chromatin condensation and caspase-3 activation associated with TNF-α and IL-6 release. The majority of these toxic effects were equally observed in Raw 264.7 which also presented high levels of PGE2. Pretreatment of SH-SY5Y cells with pharmacological inhibitors significantly reduced or blocked all the neurotoxic OXA effects. In OXA-treated mice (28 mg/kg cumulated dose) significant cold hyperalgesia and oxidative stress in the tested brain areas were shown. Our study suggests that targeting P2X7 receptor activation and mitochondrial impairment might be a potential therapeutic strategy against OXA-induced neuropathic pain.  相似文献   

12.
In vitro experiments to investigate possible stereoselective aspects of the topical administration of ibuprofen have been conducted. Incubation of ibuprofen with rat skin homogenates in the presence of coenzyme A, ATP, and magnesium provided no evidence for the formation of ibuprofenyl coenzyme A (the initial intermediate in the metabolic inversion of [R]- to [S]-ibuprofen). Similar incubation studies gave no indication of a change in the enantiomeric ratios of ibuprofen over the time course of the experiments. Percutaneous penetration studies of ibuprofen gel through porcine skin indicated that the ibuprofen enantiomer levels in the reservoir solutions were consistent with racemic ibuprofen having traversed the skin with no metabolic inversion. These results suggest that, in the models studied, skin metabolism does not result in the chiral inversion of (R)- to (S)-ibuprofen and that the topical administration of ibuprofen will result in the delivery of 50% “isomeric ballast.” Chirality 9:313–316, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
Cultured rat Schwann cells transformed by Simian Virus 40 (SV40) have previously been shown to retain their ability to synthesize myelin-associated galactosylceramide and sulfatide. Little is known about the mechanism regulating galactosphingolipid synthesis in Schwann cells. We have found that growing the transformed Schwann cells in the presence of dimethyl sulfoxide (DMSO) markedly inhibits the incorporation of [35S]sulfate into sulfatide, in a time- and dose-dependent manner. The concentration of DMSO which resulted in a half-maximal inhibition after 6 days of incubation was 0.5%, and the incubation time required for a half-maximal effect at 1.0% DMSO was approximately 4 days. In contrast, DMSC did not affect the incorporation of [35S]sulfate into glycosaminoglycans. In addition, DMSO treatment has little effect on the synthesis of cellular DNA, proteins and lipids. When transformed Schwann cells were treated with DMSO, a substantial decrease in the incorporation of [3H]galactose into galactosylceramide was observed. The concentration of DMSO which resulted in a half-maximal inhibition of galactosylceramide synthesis was approximately 0.5%, similar to the concentration required for a similar effect on sulfatide synthesis. However, the incubation time required for a half-maximal inhibitory effect on galactosylceramide synthesis at 1.0% DMSO was less than 1 day, which was substantially shorter than the time required for the inhibition of sulfatide synthesis at this concentration. This finding is consistent with the interpretation that treatment with DMSO inhibits the synthesis of galactosylceramide, a precursor of sulfatide, which results in a decrease in the synthesis of sulfatide during a prolonged incubation of DMSO.  相似文献   

14.
The R enantiomers of some of the 2-arylpropionic acid non-steroidal antiinflammatory drugs (NSAIDs) are known to undergo metabolic chiral inversion to their more pharmacologically active antipodes. This process is drug and species dependent and usually unidirectional. The S to R chiral inversion, on the other hand, is rare and has been observed, in substantial extents, only for ibuprofen in guinea pigs and 2-phenylpropionic acid in dogs. After i.p. administration of single doses of racemic ketoprofen or its optically pure enantiomers to male CD-1 mice and subsequent study of the concentration time-course of the enantiomers, we noticed substantial chiral inversion in both directions. Following racemic doses, no stereoselectivity in the plasma-concentration time courses was observed. After dosing with optically pure enantiomer, the concentration of the administered enantiomer predominated during the absorption phase. During the terminal elimination phase, however, the enantiomers had the same concentrations. Our observation is suggestive of a rapid and reversible chiral inversion for ketoprofen enantiomers in mice. Chirality 9:29–31, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
The catalytic activity of the bacterial phosphotriesterase (PTE) toward a series of chiral analogues of the chemical warfare agents sarin and soman was measured. Chemical procedures were developed for the chiral syntheses of the S(P)- and R(P)-enantiomers of O-isopropyl p-nitrophenyl methylphosphonate (sarin analogue) in high enantiomeric excess. The R(P)-enantiomer of the sarin analogue (k(cat)=2600 s(-1)) was the preferred substrate for the wild-type PTE relative to the corresponding S(P)-enantiomer (k(cat)=290 s(-1)). The observed stereoselectivity was reversed using the PTE mutant, I106A/F132A/H254Y where the k(cat) values for the R(P)- and S(P)-enantiomers were 410 and 4200 s(-1), respectively. A chemo-enzymatic procedure was developed for the chiral synthesis of the four stereoisomers of O-pinacolyl p-nitrophenyl methylphosphonate (soman analogue) with high diastereomeric excess. The R(P)R(C)-stereoisomer of the soman analogue was the preferred substrate for PTE. The k(cat) values for the soman analogues were measured as follows: R(P)R(C,) 48 s(-1); R(P)S(C), 4.8 s(-1); S(P)R(C), 0.3 s(-1), and S(P)S(C), 0.04 s(-1). With the I106A/F132A/H254Y mutant of PTE the stereoselectivity toward the chiral phosphorus center was reversed. With the triple mutant the k(cat) values for the soman analogues were found to be as follows: R(P)R(C,) 0.3 s(-1); R(P)S(C), 0.3 s(-1); S(P)R(C), 11s(-1), and S(P)S(C), 2.1 s(-1). Prior investigations have demonstrated that the S(P)-enantiomers of sarin and soman are significantly more toxic than the R(P)-enantiomers. This investigation has demonstrated that mutants of the wild-type PTE can be readily constructed with enhanced catalytic activities toward the most toxic stereoisomers of sarin and soman.  相似文献   

16.
The aminobenzo[a]quinolizines were investigated as a novel class of DPP-IV inhibitors. The stereochemistry of this class plays an important role in the bioactivity. In this study, the mechanisms of how different configuration of three chiral centers of this class influences the binding affinity were investigated by molecular dynamics simulations, free energy decomposition analysis. The S configuration for chiral center 3* is decisive for isomers to maintain high bioactivity; the chirality effect of chiral center 2* on the binding affinity is largely dependent, while the S configuration for chiral center 2* is preferable to R configuration for the bioactivity gain; the effect of chiral center 11b* on the binding affinity is insignificant. The chirality specificity for three chiral centers is responsible for distinction of two van der Waals contacts with Tyr547 and Phe357, and of H-bonding interactions with Arg125 and Glu206. Particularly, the Arg125 to act as a bridge in the H-bonding network contributes to stable H-bonding interactions of isomer in DPP-IV active site.
Figure
The S configuration for chiral center 3* is decisive for high bioactivity; the chirality effect of chiral center 2* on binding affinity is largely dependent, while the S configuration for 2* is preferable to R for bioactivity gain; the chirality specificity for chiral center 11b* to binding affinity is insignificant.  相似文献   

17.
The epoxide hydrolase activity of Aspergillus niger was synthesized during growth of the fungus and was shown to be associated with the soluble cell fraction. An enzyme preparation was worked out which could be used in place of the whole mycelium as biocatalyst for the hydrolysis of epoxides. The effect of four different cosolvents on enzyme activity was investigated. Consequently, dimethylsulfoxide (DMSO) was selected for epoxide solubilization. The effect of temperature on both reaction rate and enzyme stability was studied in the presence of DMSO (0.2 volume ratio). A temperature of 25 degrees C was selected for the reaction of bioconversion. With a substrate concentration of 4.5 mM a batch reactor showed that the enzyme preparation hydrolyzed para-nitrostyrene oxide with very high enantioselectivity. The (S) enantiomer of the epoxide remained in the reaction mixture and showed an enantiomeric excess higher than 99%. The substrate concentration could be increased to 20 mM without affecting the enantiomeric excess and degree of conversion. Therefore, the method is potentially useful for the preparative resolution of epoxides. Application are in the field of chiral synthons which are important building blocks in organic synthesis. (c) 1996 John Wiley & Sons, Inc.  相似文献   

18.
Alzheimer's disease (AD) is characterized by cerebral deposits of beta-amyloid (A beta) peptides and neurofibrillary tangles (NFT) which are surrounded by inflammatory cells. Epidemiological studies have shown that prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs) reduces the risk of developing AD and delays the onset of the disease. It has been postulated that some NSAIDs target pathological hallmarks of AD by interacting with several pathways, including the inhibition of cyclooxygenases (COX) and activation of the peroxisome proliferator-activated receptor gamma. A variety of experimental studies indicate that a subset of NSAIDs such as ibuprofen, flurbiprofen, indomethacin and sulindac also possess A beta-lowering properties in both AD transgenic mice and cell cultures of peripheral, glial and neuronal origin. While COX inhibition occurs at low concentrations in vitro (nM-low microm range), the A beta-lowering activity is observed at high concentrations (< or = 50 microm). Nonetheless, studies with flurbiprofen or ibuprofen in AD transgenic mice show that the effects on A beta levels or deposition are attained at plasma levels similar to those achieved in humans at therapeutic dosage. Still, it remains to be assessed whether adequate concentrations are reached in the brain. This is a crucial aspect that will allow defining the dose-window and the length of treatment in future clinical trials. Here, we will discuss how the combination of anti-amyloidogenic and anti-inflammatory activities of certain NSAIDs may produce a profile potentially relevant to their clinical use as disease-modifying agents for the treatment of AD.  相似文献   

19.
We have demonstrated that in vivo administration of phosphorothioate antisense oligodeoxynucleotides (AS[S]ODNs) to type I insulin-like growth factor receptor (IGF-IR) mRNA resulted in inhibition of C4HD breast cancer growth in BALB/c mice. The present study focused on whether in vivo administration of C4HD tumor cells pretreated with IGF-IR AS[S]ODN and irradiated could provide protection against C4HD wild-type tumor challenge and also on elucidating the mechanism mediating this effect. Our results showed that mice immunized with IGF-IR AS[S]ODN-treated C4HD cells experienced a growth inhibition of 53.4%, 61.6%, and 60.2% when compared with PBS-treated mice, wild-type C4HD cell-injected mice, or phosphorothioate sense oligodeoxynucleotide-treated C4HD cell-injected mice, respectively. The protective effect was C4HD-specific, because no cross-protection was observed against other syngeneic mammary tumor lines. The lack of protection against tumor formation in nude mice indicated that T cells were involved in the antitumoral response. Furthermore, cytotoxicity and splenocyte proliferation assays demonstrated that a cellular CD8(+)-dependent immune response, acting through the Fas/Fas ligand death pathway, could be mediating the antitumor effect induced by immunization with AS[S]ODN-treated cells. Immunization also induced splenocytes to produce Ag-dependent IFN-gamma, indicating the presence of a type 1 response. We demonstrated for the first time that IGF-IR AS[S]ODN treatment of breast cancer cells induced expression of CD86 and heat shock protein 70 molecules, both involved in the induction of the immunogenic phenotype. Immunization with these tumor immunogens imparted protection against parental tumor growth through activation of a specific immune response.  相似文献   

20.
Novel herbicidally active sulfonamide compounds having a 2-arylsubstituted oxiranylmethyl structure are racemates due to a chiral carbon in the oxirane moiety. To clarify the stereochemical structure-activity relationship, we synthesized each enantiomer of 4-chloro-N-[2-(6-chloropyridin-2-yl)-2-oxiran-2-ylmethyl]-3,N-dimethylbenzenesulfonamide and N-[2-(6-chloropyridin-2-yl)-2-oxiran-2-ylmethyl]-N-methyl-5,6,7,8-tetrahydronaphthalene-2-sulfonamide by chemical methods including Sharpless asymmetric chlorohydroxylation. The results of herbicidal tests indicated that the (S)-isomers were the active forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号